33,069 research outputs found

    Influence of temperature and the role of chromium on the kinetics of sulfidation of 310 stainless steel

    Get PDF
    The sulfidation of 310 stainless steel was studied over the temperature range from 910 K to 1285 K. By adjusting the ratio of hydrogen sulfide, variations in sulfur potential were obtained. The effect of temperature on sulfidation was determined at three different sulfur potentials: 39/sqNm, 0.014/sqNm, and 0.00015/sqNm. All sulfide scales contained one or two surface layers in addition to a subscale. The second outer layer (OL-II), furthest from the alloy, contained primarily Fe-Ni-S. The first outer layer (OL-I), nearest the subscale, contained FE-Cr-S. The subscale consisted of sulfide inclusions in the metal matrix. At a given temperature and sulfur potential, the weight gain data obeyed the parabolic rate law after an initial transient period. The parabolic rate constants obtained at the sulfur potential of 39/sqNm did not show a break when the logarithm of the rate constant was plotted as a function of the inverse of absolute temperature. Sulfidation carried out at sulfur potentials below 0.02/sqNm, however, did show a break at 1145 K, which is termed as the transition temperature. This break was found to be associated with the changes which had occurred in the Fe:Cr ratio of OL-I. Below the transition temperature the activation energy was found to be approximately 125 kj/mole. Above the transition temperature the rate of sulfidation decreased with temperature but dependent on the Fe:Cr ratio in the iron-chromium-sulfide layers of the OL-I. A reaction mechanism consistent with the experimental results has been proposed

    Sulfidation of 310 stainless steel at sulfur potentials encountered in coal conversion systems

    Get PDF
    The sulfidation of SAE 310 stainless steel was carried out in gas mixtures of hydrogen and hydrogen sulfide over a range of sulfur potentials anticipated in advanced coal gasification processes. The kinetics, composition, and morphology of sulfide scale formation were studied at a fixed temperature of 1,065 K over a range of sulfur potentials from .00015 Nm to the -2nd power to 900 Nm to the -2nd power. At all sulfur potentials investigated, the sulfide scales were found to be multilayered. The relative thickness of the individual layers as well as the composition was found to depend on the sulfur potential. The reaction was found to obey the parabolic rate law after an initial transient period. Considerably longer transient periods were found to be due to unsteady state conditions resulting from compositional variations in the spinel layer. The sulfur pressure dependence on the parabolic rate constant was found to best fit the equation K sub p equals const. (P sub S2) to the 1/nth power, where n equals 3.7. The growth of the outer layers was found to be primarily due to the diffusion of metal ions, iron being the predominant species. The inner layer growth was due to the dissociation of the primary product at the alloy scale interface and depended on the activity of chromium

    Spectral Efficiency of One-Bit Sigma-Delta Massive MIMO

    Get PDF
    We examine the uplink spectral efficiency of a massive MIMO base station employing a one-bit Sigma-Delta ( \Sigma \Delta ) sampling scheme implemented in the spatial rather than the temporal domain. Using spatial rather than temporal oversampling, and feedback of the quantization error between adjacent antennas, the method shapes the spatial spectrum of the quantization noise away from an angular sector where the signals of interest are assumed to lie. It is shown that, while a direct Bussgang analysis of the \Sigma \Delta approach is not suitable, an alternative equivalent linear model can be formulated to facilitate an analysis of the system performance. The theoretical properties of the spatial quantization noise power spectrum are derived for the \Sigma \Delta array, as well as an expression for the spectral efficiency of maximum ratio combining (MRC). Simulations verify the theoretical results and illustrate the significant performance gains offered by the \Sigma \Delta approach for both MRC and zero-forcing receivers

    Some studies on a solid state sulfur probe for coal gasification systems

    Get PDF
    Measurements on the solid electrolyte cell (Ar + H(2) + H(2)S/CaS + CaF(2) + (Pt)//CaF(2)//(Pt) + CaF(2) + CaS/H(2) + H(2)+Ar) show that the emf of the cell is directly related to the difference in sulfur potentials established at the Ar + H(2) + H(2)S/electrode interfaces. The electrodes convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient. Response time of the probe varies from approximately 9 hr at 990 K to 2.5 hr at 1225 K. The conversion of calcium sulfide and/or calcium fluoride into calcium oxide is not a problem anticipated in commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications

    Corrosion of 310 stainless steel in H2-H2O-H2S gas mixtures: Studies at constant temperature and fixed oxygen potential

    Get PDF
    Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 x 10 to the minus 13th power/cu Nm and sulfur potentials ranging from 0.19 x 10 to the minus 2nd power/cu Nm to 33 x 10 to the minus 2nd power/cu Nm. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (p sub S sub 2 less than or equal to 2.7 x 10 to the minus 2nd power/cu Nm) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfication. At low sulfur potentials (P sub S sub 2 less than or equal to 0.19 x 10 to the minus 2nd power/cu Nm) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases

    Solid spherical glass particle impingement studies of plastic materials

    Get PDF
    Erosion experiments on polymethyl methacrylate (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE) were conducted with spherical glass beads impacting at normal incidence. Optical and scanning electron microscopic studies and surface profile measurements were made on specimens at predetermined test intervals. During the initial stage of damage to PMMA and polycarbonate, material expands or builds up above the original surface. However, this buildup disappears as testing progresses. Little or no buildup was observed on PTFE. PTFE is observed to be the most resistant material to erosion and PMMA the least. At low impact pressures, material removal mechanisms are believed to be similar to those for metallic materials. However, at higher pressures, surface melting is indicated at the center of impact. Deformation and fatigue appear to play major roles in the material removal process with possible melting or softening

    Morphology of an aluminum alloy eroded by a jet of angular particles impinging at normal incidence

    Get PDF
    The erosion of an aluminum alloy impinged by crushed glass particles at normal incidence was studied. The erosion patterns were analyzed by scanning electron microscopy, energy dispersive X-ray spectroscopy, and surface profilometer measurements. From the analysis of specimens tested at various driving gas pressures and time intervals, four distinct erosion regions were identified. A study of pit morphology and its relationship to cumulative erosion was made. Cutting wear is believed to be the predominant material removal mechanism; some evidence of deformation wear was found during the incubation period

    Correlations of projectile like fragments in heavy ion reactions at Fermi energy

    Get PDF
    Correlations between pairs of projectile-like fragments, emitted by the system 16O+197Au{^{16}O}+{^{197}Au} at the laboratory bombarding energy of 515 MeV, have been studied under two stipulated conditions: (1) at least one member of the pair is emitted at an angle less than the grazing angle for the system, (2) both the members of the pair are emitted at angles larger than the grazing angle. A surprisingly large difference, by more than an order of magnitude, is found between the correlations for the two cases. This observation could be explained on the basis of a simple semi-classical break up model. Further analysis of the variation of the charge correlation function with the difference in the nuclear charges of the correlated pair showed trends which are consistent with an "inelastic break up process", in which the projectile breaks up at the radius of contact, in such a way that, one fragment (preferably the lighter) is emitted to one side within the grazing angle, while the other orbits around the target nucleus for a while and emerges on the other side, at a negative scattering angle, much like in a deep inelastic scattering.Comment: 19 pages, 12 figures accepted by Eurp. Physics Journal
    corecore