1,509 research outputs found
Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene
The glass transition temperature and relaxation dynamics of the segmental
motions of thin films of polystyrene labeled with a dye,
4-[N-ethyl-N-(hydroxyethyl)]amino-4-nitraozobenzene (Disperse Red 1, DR1) are
investigated using dielectric measurements. The dielectric relaxation strength
of the DR1-labeled polystyrene is approximately 65 times larger than that of
the unlabeled polystyrene above the glass transition, while there is almost no
difference between them below the glass transition. The glass transition
temperature of the DR1-labeled polystyrene can be determined as a crossover
temperature at which the temperature coefficient of the electric capacitance
changes from the value of the glassy state to that of the liquid state. The
glass transition temperature of the DR1-labeled polystyrene decreases with
decreasing film thickness in a reasonably similar manner to that of the
unlabeled polystyrene thin films. The dielectric relaxation spectrum of the
DR1-labeled polystyrene is also investigated. As thickness decreases, the
-relaxation time becomes smaller and the distribution of the
-relaxation times becomes broader. These results show that thin films
of DR1-labeled polystyrene are a suitable system for investigating confinement
effects of the glass transition dynamics using dielectric relaxation
spectroscopy.Comment: 10 pages, 11 figures, 2 Table
Comparisons of refractive index gradient and stability profiles measured by balloons and the MU radar at a high vertical resolution in the lower stratosphere
Many experimental studies have demonstrated that VHF Stratosphere-Troposphere (ST) radar echo power is proportional to the generalized refractive index gradient squared <I>M</I><sup>2</sup> when using a vertically oriented beam. Because humidity is generally negligible above the tropopause, VHF ST radars can thus provide information on the static stability (quantified by the squared Brunt-VÀisÀlÀ frequency <I>N</I><sup>2</sup>) at stratospheric heights and this capability is useful for many scientific applications. Most studies have been performed until now at a vertical resolution of 150 m or more. In the present paper, results of comparisons between radar- and (balloon borne) radiosonde-derived <I>M</I><sup>2</sup> and <I>N</I><sup>2</sup> are shown at a better vertical resolution of 50 m with the MU radar (34.85&deg; N, 136.15&deg; E; Japan) by benefiting from the range resolution improvement provided by the multi-frequency range imaging technique, using the Capon processing method. Owing to favorable winds in the troposphere, the radiosondes did not drift horizontally more than about 30 km from the MU radar site by the time they reached an altitude of 20 km. The measurements were thus simultaneous and almost collocated. Very good agreements have been obtained between both high resolution profiles of <i>M</i><sup>2</sup>, as well as profiles of <i>N</i><sup>2</sup>. It is also shown that this agreement can still be improved by taking into account a frozen-in advection of the air parcels by a horizontally uniform wind. Therefore, it can be concluded that 1) the range imaging technique with the Capon method really provides substantial range resolution improvement, despite the relatively weak Signal-to-Noise Ratios (SNR) over the analyzed region of the lower stratosphere, 2) the proportionality of the radar echo power to <I>M</I><sup>2</sup> at a vertical scale down to 50 m in the lower stratosphere is experimentally demonstrated, 3) the MU radar can provide stability profiles with a vertical resolution of 50 m at heights where humidity is negligible, 4) stable stratospheric layers as thin as 50 m or less have at least a horizontal extent of a few km to several tens of kilometers and can be considered as frozenly advected over scales of a few tens of minutes
Typhoon 9707 observations with the MU radar and L-band boundary layer radar
International audienceTyphoon 9707 (Opal) was observed with the VHF-band Middle and Upper atmosphere (MU) radar, an L-band boundary layer radar (BLR), and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1?3 km to 2?10 km with increasing distance (within 80?260 km range) from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1?2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ?bright band' around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde soundings. In the convective precipitating clouds, the regions of strong and weak reflectivities were well associated with those of updraft and downdraft, respectively
Photoresponse of LaSrCuO nanostrip
We report the fabrication and photoresponse of 5 nm thick
LaSrCuO nanostrip with a width of 100nm. The I-V
characteristics of the nanostrip show a hysteresis and a sharp voltage jump at
. The (3K) of the nanostrip is 2.3 x 10 A/cm. The
nanostrip exhibits photoresponse signals when illuminated by a pulse laser at
1560 nm wavelength with a bias current just below . The height of the
signal reduces as the optical intensity decreases and disappears below -10 dBm.
The signal also decreases as the temperature increases, but it exists up to 30
K. These results suggest the possibility of LaSrCuO
nanostrip as single-photon detector (SSPD, SNSPD) working at high temperature
by further reducing the cross-section of the strip
Slow dynamics near glass transitions in thin polymer films
The -process (segmental motion) of thin polystyrene films supported
on glass substrate has been investigated in a wider frequency range from
10 Hz to 10 Hz using dielectric relaxation spectroscopy and thermal
expansion spectroscopy. The relaxation rate of the -process increases
with decreasing film thickness at a given temperature above the glass
transition. This increase in the relaxation rate with decreasing film thickness
is much more enhanced near the glass transition temperature. The glass
transition temperature determined as the temperature at which the relaxation
time of the -process becomes a macroscopic time scale shows a distinct
molecular weight dependence. It is also found that the Vogel temperature has
the thickness dependence, i.e., the Vogel temperature decreases with decreasing
film thickness. The expansion coefficient of the free volume is
extracted from the temperature dependence of the relaxation time within the
free volume theory. The fragility index is also evaluated as a function of
thickness. Both and are found to decrease with decreasing film
thickness.Comment: 9 pages, 7 figures, and 2 table
On the vertical extent of the large low shear velocity province beneath the South Pacific Superswell
International audienceThe three-dimensional S-wave velocity structure beneath the South Pacific Superswell is obtained from joint broadband seismic experiments on the ocean floor and islands. We collected only approximately 800 relative times of long-period teleseismic SH-waves by using a waveform cross-correlation from 76 events occurring from January 2003 to May 2005. We conducted relative time tomography to obtain a 3D structure to depths of 1600 km. In the resultant image, we find a characteristic distribution of low- velocity regions. The most prominent features are a large doughnut-shaped low-velocity region at 800 km depth, and an elongated large low-velocity region beneath the Society to Pitcairn hotspots at 1200 km depth. Our model suggests that a large low shear velocity province rooted in the D00 extends upwards and culminates near the top of the lower mantle beneath the central part of the South Pacific Superswell although its perfect continuity is not still confirmed
A molecular dynamics simulation of polymer crystallization from oriented amorphous state
Molecular process of crystallization from an oriented amorphous state was
reproduced by molecular dynamics simulation for a realistic polyethylene model.
Initial oriented amorphous state was obtained by uniaxial drawing an isotropic
glassy state at 100 K. By the temperature jump from 100 K to 330 K, there
occurred the crystallization into the fiber structure, during the process of
which we observed the developments of various order parameters. The real space
image and its Fourier transform revealed that a hexagonally ordered domain was
initially formed, and then highly ordered crystalline state with stacked
lamellae developed after further adjustment of the relative heights of the
chains along their axes.Comment: 4 pages, 3 figure
Combined wind profiler-weather radar observations of orographic rainband around Kyushu, Japan in the Baiu season
International audienceA special observation campaign (X-BAIU), using various instruments (wind profilers, C-band weather radars, X-band Doppler radars, rawinsondes, etc.), was carried out in Kyushu (western Japan) during the Baiu season, from 1998 to 2002. In the X-BAIU-99 and -02 observations, a line-shaped orographic rainband extending northeastward from the Koshikijima Islands appeared in the low-level strong wind with warm-moist airs. The weather radar observation indicated that the rainband was maintained for 11h. The maximum length and width of the rainband observed in 1999 was ~200km and ~20km, respectively. The rainband observed in 2002 was not so developed compared with the case in 1999. The Froude number averaged from sea level to the top of the Koshikijima Islands (~600m) was large (>1), and the lifting condensation level was below the tops of the Koshikijima Islands. Thus, it is suggested that the clouds organizing the rainband are formed by the triggering of the mountains on the airflow passing over them. The vertical profile of horizontal wind in/around the rainband was investigated in the wind profiler observations. In the downdraft region 60km from the Koshikijima Islands, strong wind and its clockwise rotation with increasing height was observed below 3km altitude. In addition, a strong wind component perpendicular to the rainband was observed when the rainband was well developed. These wind behaviors were related to the evolution of the rainband
- âŠ