1,103 research outputs found

    On the entropy of plasmas described with regularized κ\kappa-distributions

    Full text link
    In classical thermodynamics the entropy is an extensive quantity, i.e.\ the sum of the entropies of two subsystems in equilibrium with each other is equal to the entropy of the full system consisting of the two subsystems. The extensitivity of entropy has been questioned in the context of a theoretical foundation for the so-called κ\kappa-distributions, which describe plasma constituents with power-law velocity distributions. We demonstrate here, by employing the recently introduced {\it regularized κ\kappa-distributions}, that entropy can be defined as an extensive quantity even for such power-law-like distributions that truncate exponentially.Comment: Preprint accepted for publication in Phys. Rev.

    Pitch-angle scattering in magnetostatic turbulence. I. Test-particle simulations and the validity of analytical results

    Full text link
    Context. Spacecraft observations have motivated the need for a refined description of the phase-space distribution function. Of particular importance is the pitch-angle diffusion coefficient that occurs in the Fokker-Planck transport equation. Aims. Simulations and analytical test-particle theories are compared to verify the diffusion description of particle transport, which does not allow for non-Markovian behavior. Methods. A Monte-Carlo simulation code was used to trace the trajectories of test particles moving in turbulent magnetic fields. From the ensemble average, the pitch-angle Fokker-Planck coefficient is obtained via the mean square displacement. Results. It is shown that, while excellent agreement with analytical theories can be obtained for slab turbulence, considerable deviations are found for isotropic turbulence. In addition, all Fokker-Planck coefficients tend to zero for high time values.Comment: 8 pages, 10 figures, accepted for publication in Astron. Astrophy

    Dual Maxwellian-Kappa modelling of the solar wind electrons: new clues on the temperature of Kappa populations

    Full text link
    Context. Recent studies on Kappa distribution functions invoked in space plasma applications have emphasized two alternative approaches which may assume the temperature parameter either dependent or independent of the power-index κ\kappa. Each of them can obtain justification in different scenarios involving Kappa-distributed plasmas, but direct evidences supporting any of these two alternatives with measurements from laboratory or natural plasmas are not available yet. Aims. This paper aims to provide more facts on this intriguing issue from direct fitting measurements of suprathermal electron populations present in the solar wind, as well as from their destabilizing effects predicted by these two alternating approaches. Methods. Two fitting models are contrasted, namely, the global Kappa and the dual Maxwellian-Kappa models, which are currently invoked in theory and observations. The destabilizing effects of suprathermal electrons are characterized on the basis of a kinetic approach which accounts for the microscopic details of the velocity distribution. Results. In order to be relevant, the model is chosen to accurately reproduce the observed distributions and this is achieved by a dual Maxwellian-Kappa distribution function. A statistical survey indicates a κ\kappa-dependent temperature of the suprathermal (halo) electrons for any heliocentric distance. Only for this approach the instabilities driven by the temperature anisotropy are found to be systematically stimulated by the abundance of suprathermal populations, i.e., lowering the values of κ\kappa-index.Comment: Submitted to A&

    A criterion to discriminate between solar and cosmic ray forcing of the terrestrial climate

    No full text
    International audienceThere is increasing evidence that there exist interstellar-terrestrial relations and that the heliosphere's effectivity to serve as a protecting shield for the Earth, specifically against cosmic rays, is varying in time. Nonetheless, a debate is going on whether, amongst other drivers, the Sun or the cosmic rays are influencing the terrestrial climate, particularly on periods of hundred years and shorter. As the modelling of the transport of cosmic rays in the heliosphere has evolved from pure test particle simulations to far more consistent treatments, one can explain various correlations within the framework of physical models and one can make quantitative predictions regarding terrestrial indicators of interstellar-terrestrial relations. This level of understanding and modelling allows to identify a criterion with which one can discriminate between solar and cosmic ray forcing on a period of several decades. We define such a criterion and discuss related existing observations

    The Science with the Interstellar Heliopause Probe

    No full text
    International audienceAfter the exciting in-situ observations of the termination shock and the entry of the Voyager 1 spacecraft in the heliosheath, there is a growing awareness of the significance of the physics of the outer heliosphere. Its understanding helps to clarify the structure of our immediate interstellar neighbourhood, contributes to the clarification of fundamental astrophysical processes like the acceleration of charged particles at a steller wind termination shock, and also sheds light on the question to what extent interstellar-terrestrial relations are important for the environment of and on the Earth. Consequently, there are new seriously discussed suggestions for sending a modern spacecraft into the heliosheath and beyond. One of those candidates is the Interstellar Heliopause Probe (IHP) that has been studied in a Technology Reference Study by ESA/ESTEC. Here, we discuss the science objectives and expected scientific performance of this mission

    MHD Simulation of the Inner-Heliospheric Magnetic Field

    Full text link
    Maps of the radial magnetic field at a heliocentric distance of ten solar radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the magnetic field are the result of solar surface flux transport modelling using observational data of sunspot groups coupled with a current sheet source surface model. Amongst several advancements, this allows for higher angular resolution than that of comparable observational data from synoptic magnetograms. The required initial conditions for the other MHD quantities are obtained following an empirical approach using an inverse relation between flux tube expansion and radial solar wind speed. The computations are performed for representative solar minimum and maximum conditions, and the corresponding state of the solar wind up to the Earths orbit is obtained. After a successful comparison of the latter with observational data, they can be used to drive outer-heliospheric models.Comment: for associated wmv movie files accompanying Figure 7, see http://www.tp4.rub.de/~tow/max.wmv and http://www.tp4.rub.de/~tow/min.wm
    • …
    corecore