16 research outputs found

    Scaling Effects and Spatio-Temporal Multilevel Dynamics in Epileptic Seizures

    Get PDF
    Epileptic seizures are one of the most well-known dysfunctions of the nervous system. During a seizure, a highly synchronized behavior of neural activity is observed that can cause symptoms ranging from mild sensual malfunctions to the complete loss of body control. In this paper, we aim to contribute towards a better understanding of the dynamical systems phenomena that cause seizures. Based on data analysis and modelling, seizure dynamics can be identified to possess multiple spatial scales and on each spatial scale also multiple time scales. At each scale, we reach several novel insights. On the smallest spatial scale we consider single model neurons and investigate early-warning signs of spiking. This introduces the theory of critical transitions to excitable systems. For clusters of neurons (or neuronal regions) we use patient data and find oscillatory behavior and new scaling laws near the seizure onset. These scalings lead to substantiate the conjecture obtained from mean-field models that a Hopf bifurcation could be involved near seizure onset. On the largest spatial scale we introduce a measure based on phase-locking intervals and wavelets into seizure modelling. It is used to resolve synchronization between different regions in the brain and identifies time-shifted scaling laws at different wavelet scales. We also compare our wavelet-based multiscale approach with maximum linear cross-correlation and mean-phase coherence measures

    Slow modulations of high-frequency activity (40-140-Hz) discriminate preictal changes in human focal epilepsy

    No full text
    Recent evidence suggests that some seizures are preceded by preictal changes that start from minutes to hours before an ictal event. Nevertheless an adequate statistical evaluation in a large database of continuous multiday recordings is still missing. Here, we investigated the existence of preictal changes in long-term intracranial recordings from 53 patients with intractable partial epilepsy (in total 531 days and 558 clinical seizures). We describe a measure of brain excitability based on the slow modulation of high-frequency gamma activities (40-140 Hz) in ensembles of intracranial contacts. In prospective tests, we found that this index identified preictal changes at levels above chance in 13.2% of the patients (7/53), suggesting that results may be significant for the whole group (p < 0.05). These results provide a demonstration that preictal states can be detected prospectively from EEG data. They advance understanding of the network dynamics leading to seizure and may help develop novel seizure prediction algorithms
    corecore