44,360 research outputs found

    Generation of Suprathermal Electrons by Collective Processes in Collisional Plasma

    Get PDF
    The ubiquity of high-energy tails in the charged particle velocity distribution functions observed in space plasmas suggests the existence of an underlying process responsible for taking a fraction of the charged particle population out of thermal equilibrium and redistributing it to suprathermal velocity and energy ranges. The present Letter focuses on a new and fundamental physical explanation for the origin of suprathermal electron distribution function in a highly collisional plasma. This process involves a newly discovered electrostatic bremsstrahlung emission that is effective in a plasma in which binary collisions are present. The steady-state electron velocity distribution function dictated by such a process corresponds to a Maxwellian core plus a quasi-inverse power-law tail, which is a feature commonly observed in many space plasma environment. In order to demonstrate this, the system of self-consistent particle- and wave- kinetic equations are numerically solved with an initially Maxwellian electron velocity distribution and Langmuir wave spectral intensity, which is a state that does not reflect the presence of electrostatic bremsstrahlung process, and hence not in force balance. The electrostatic bremsstrahlung term subsequently drives the system to a new force-balanced steady state. After a long integration period it is demonstrated the initial Langmuir fluctuation spectrum is modified, which in turn distorts the initial Maxwellian electron distribution into a velocity distribution that resembles the said core-suprathermal velocity distribution. Such a mechanism may thus be operative at the coronal source region, which is characterized by high collisionality.Comment: 7 pages, 2 figures. Published at: The Astrophysical Journal Letters, Volume 849, Number 2, L30. url: https://doi.org/10.3847/2041-8213/aa956

    Heating and Cooling Dynamics of Carbon Nanotubes Observed by Temperature-Jump Spectroscopy and Electron Microscopy

    Get PDF
    Microscopy imaging indicates that in situ carbon nanotubes (CNTs) irradiation with relatively low dosages of infrared radiation results in significant heating of the tubes to temperatures above 1300 K. Ultrafast temperature-jump experiments reveal that CNTs laser-induced heating and subsequent cooling in solution take tens and hundreds of picoseconds, respectively. Given the reported transient behavior, these observations suggest novel ways for a T-jump methodology, unhindered by the requirement for excitation of water in the study of biological structures. They also provide the rate information needed for optimization of photothermal therapy that invokes infrared irradiation to selectively heat and annihilate cancer cells

    A Unified Picture of the FIP and Inverse FIP Effects

    Full text link
    We discuss models for coronal abundance anomalies observed in the coronae of the sun and other late-type stars following a scenario first introduced by Schwadron, Fisk & Zurbuchen of the interaction of waves at loop footpoints with the partially neutral gas. Instead of considering wave heating of ions in this location, we explore the effects on the upper chromospheric plasma of the wave ponderomotive forces. These can arise as upward propagating waves from the chromosphere transmit or reflect upon reaching the chromosphere-corona boundary, and are in large part determined by the properties of the coronal loop above. Our scenario has the advantage that for realistic wave energy densities, both positive and negative changes in the abundance of ionized species compared to neutrals can result, allowing both FIP and Inverse FIP effects to come out of the model. We discuss how variations in model parameters can account for essentially all of the abundance anomalies observed in solar spectra. Expected variations with stellar spectral type are also qualitatively consistent with observations of the FIP effect in stellar coronae.Comment: 25 pages, 4 figures, submitted to Ap

    A model for the formation of the active region corona driven by magnetic flux emergence

    Full text link
    We present the first model that couples the formation of the corona of a solar active region to a model of the emergence of a sunspot pair. This allows us to study when, where, and why active region loops form, and how they evolve. We use a 3D radiation MHD simulation of the emergence of an active region through the upper convection zone and the photosphere as a lower boundary for a 3D MHD coronal model. The latter accounts for the braiding of the magnetic fieldlines, which induces currents in the corona heating up the plasma. We synthesize the coronal emission for a direct comparison to observations. Starting with a basically field-free atmosphere we follow the filling of the corona with magnetic field and plasma. Numerous individually identifiable hot coronal loops form, and reach temperatures well above 1 MK with densities comparable to observations. The footpoints of these loops are found where small patches of magnetic flux concentrations move into the sunspots. The loop formation is triggered by an increase of upwards-directed Poynting flux at their footpoints in the photosphere. In the synthesized EUV emission these loops develop within a few minutes. The first EUV loop appears as a thin tube, then rises and expands significantly in the horizontal direction. Later, the spatially inhomogeneous heat input leads to a fragmented system of multiple loops or strands in a growing envelope.Comment: 13 pages, 10 figures, accepted to publication in A&

    Magnetic Jam in the Corona of the Sun

    Full text link
    The outer solar atmosphere, the corona, contains plasma at temperatures of more than a million K, more than 100 times hotter that solar surface. How this gas is heated is a fundamental question tightly interwoven with the structure of the magnetic field in the upper atmosphere. Conducting numerical experiments based on magnetohydrodynamics we account for both the evolving three-dimensional structure of the atmosphere and the complex interaction of magnetic field and plasma. Together this defines the formation and evolution of coronal loops, the basic building block prominently seen in X-rays and extreme ultraviolet (EUV) images. The structures seen as coronal loops in the EUV can evolve quite differently from the magnetic field. While the magnetic field continuously expands as new magnetic flux emerges through the solar surface, the plasma gets heated on successively emerging fieldlines creating an EUV loop that remains roughly at the same place. For each snapshot the EUV images outline the magnetic field, but in contrast to the traditional view, the temporal evolution of the magnetic field and the EUV loops can be different. Through this we show that the thermal and the magnetic evolution in the outer atmosphere of a cool star has to be treated together, and cannot be simply separated as done mostly so far.Comment: Final version published online on 27 April 2015, Nature Physics 12 pages and 8 figure

    Communications software performance prediction

    Get PDF
    Software development can be costly and it is important that confidence in a software system be established as early as possible in the design process. Where the software supports communication services, it is essential that the resultant system will operate within certain performance constraints (e.g. response time). This paper gives an overview of work in progress on a collaborative project sponsored by BT which aims to offer performance predictions at an early stage in the software design process. The Permabase architecture enables object-oriented software designs to be combined with descriptions of the network configuration and workload as a basis for the input to a simulation model which can predict aspects of the performance of the system. The prototype implementation of the architecture uses a combination of linked design and simulation tools

    Non-Markovian generalization of the Lindblad theory of open quantum systems

    Full text link
    A systematic approach to the non-Markovian quantum dynamics of open systems is given by the projection operator techniques of nonequilibrium statistical mechanics. Combining these methods with concepts from quantum information theory and from the theory of positive maps, we derive a class of correlated projection superoperators that take into account in an efficient way statistical correlations between the open system and its environment. The result is used to develop a generalization of the Lindblad theory to the regime of highly non-Markovian quantum processes in structured environments.Comment: 10 pages, 1 figure, replaced by published versio
    • …
    corecore