2,191 research outputs found
Sufficient conditions for the anti-Zeno effect
The ideal anti-Zeno effect means that a perpetual observation leads to an
immediate disappearance of the unstable system. We present a straightforward
way to derive sufficient conditions under which such a situation occurs
expressed in terms of the decaying states and spectral properties of the
Hamiltonian. They show, in particular, that the gap between Zeno and anti-Zeno
effects is in fact very narrow.Comment: LatEx2e, 9 pages; a revised text, to appear in J. Phys. A: Math. Ge
Recommended from our members
Laser Micro Sintering â A Quality Leap through Improvement of Powder Packing
Laser micro sintering, a modification of selective laser sintering for freeform fabrication
of micro-parts, was continuously upgraded since its first application. Poor density of the powder
layers has been a persisting problem that had to be dealt with from the beginning. One solution
was the application of high intensity q-switched laser pulses. Compaction of the material and
improvement of the sinter resolution was achieved. But with these pulse-regimes only limited
density of the sintered body has been achievable. Recently special efforts have been made to get
rid of or at least reduce these drawbacks by markedly higher compaction of the respective powder
layers. There is clear evidence that with sufficiently compacted powder layers even laser micro
sintering with continuous radiation should be feasible. Till recently laser sintering of metal had
been applied mainly to produce monolithic components. With the upgraded technique direct
generation of micro devices with freely movable subassemblies can be possible.Mechanical Engineerin
Lieb-Thirring inequalities for geometrically induced bound states
We prove new inequalities of the Lieb-Thirring type on the eigenvalues of
Schr\"odinger operators in wave guides with local perturbations. The estimates
are optimal in the weak-coupling case. To illustrate their applications, we
consider, in particular, a straight strip and a straight circular tube with
either mixed boundary conditions or boundary deformations.Comment: LaTeX2e, 14 page
Edge currents in the absence of edges
We investigate a charged two-dimensional particle in a homogeneous magnetic
field interacting with a periodic array of point obstacles. We show that while
Landau levels remain to be infinitely degenerate eigenvalues, between them the
system has bands of absolutely continuous spectrum and exhibits thus a
transport along the array. We also compute the band functions and the
corresponding probability current.Comment: Final version, to appear in Phys. Lett. A; 10 LaTeX pages with 3 eps
figure
Spectra of soft ring graphs
We discuss of a ring-shaped soft quantum wire modeled by interaction
supported by the ring of a generally nonconstant coupling strength. We derive
condition which determines the discrete spectrum of such systems, and analyze
the dependence of eigenvalues and eigenfunctions on the coupling and ring
geometry. In particular, we illustrate that a random component in the coupling
leads to a localization. The discrete spectrum is investigated also in the
situation when the ring is placed into a homogeneous magnetic field or threaded
by an Aharonov-Bohm flux and the system exhibits persistent currents.Comment: LaTeX 2e, 17 pages, with 10 ps figure
Spectrum of the Schr\"odinger operator in a perturbed periodically twisted tube
We study Dirichlet Laplacian in a screw-shaped region, i.e. a straight
twisted tube of a non-circular cross section. It is shown that a local
perturbation which consists of "slowing down" the twisting in the mean gives
rise to a non-empty discrete spectrum.Comment: LaTeX2e, 10 page
On the spectrum of a waveguide with periodic cracks
The spectral problem on a periodic domain with cracks is studied. An
asymptotic form of dispersion relations is calculated under assumption that the
opening of the cracks is small
Topologically non-trivial quantum layers
Given a complete non-compact surface embedded in R^3, we consider the
Dirichlet Laplacian in a layer of constant width about the surface. Using an
intrinsic approach to the layer geometry, we generalise the spectral results of
an original paper by Duclos et al. to the situation when the surface does not
possess poles. This enables us to consider topologically more complicated
layers and state new spectral results. In particular, we are interested in
layers built over surfaces with handles or several cylindrically symmetric
ends. We also discuss more general regions obtained by compact deformations of
certain layers.Comment: 15 pages, 6 figure
Spectroscopy of annular drums and quantum rings: perturbative and nonperturbative results
We obtain systematic approximations to the states (energies and wave
functions) of quantum rings (annular drums) of arbitrary shape by conformally
mapping the annular domain to a simply connected domain. Extending the general
results of Ref.\cite{Amore09} we obtain an analytical formula for the spectrum
of quantum ring of arbirtrary shape: for the cases of a circular annulus and of
a Robnik ring considered here this formula is remarkably simple and precise. We
also obtain precise variational bounds for the ground state of different
quantum rings. Finally we extend the Conformal Collocation Method of
\cite{Amore08,Amore09} to the class of problems considered here and calculate
precise numerical solutions for a large number of states ().Comment: 12 pages, 12 figures, 2 table
Recommended from our members
Processing of Silicon Carbide by Laser Micro Sintering
Silicon carbide â a solid with covalent bonds - is conventionally synthesized via the Acheson
process. Usually solid bodies of silicon carbide with definite shapes are generated from the
grained material via hot isostatic pressing or liquid phase sintering. Both processes are
conducted under well-controlled temperature regimes. Applying the freeform fabrication
technique âLaser Micro Sinteringâ poses a big challenge to experimental skill due to the nonequilibrium conditions that are characteristic features of laser material processing.
Successive layers SiC layers with a thickness of 1ÎŒm were processed with coherent
radiation of 1064 nm. The specific behavior of two different silicon carbide powders - one of
them blended with additives - are reported along with interpretational approaches.Mechanical Engineerin
- âŠ