374 research outputs found

    Multiband monopole antenna for mobile applications

    Get PDF
    — In this paper, a multiband monopole antenna has been proposed for mobile applications. The monopole antenna has simple structure with a physical size of 15 cm × 7 cm. The antenna consists of monopole shape loaded by a set of folded arms with a varying length which lead to a better impedance matching result and multiband performance. The simulated results show that the proposed antenna provide multiband frequency operation of 0.8 GHz, 1.8 GHz 2.1 GHz, 2.6 GHz and 3.5 GHz which covers the range from 0 to 4 GHz. The antenna is designed to operate at sub-6 GHz which proposed as lower frequency band to deliver 5G in early stage. The designed antenna has been fabricated and measured to validate the simulated results. RF Coaxial U.FL Connector was used as the port connector. The measurement results agrees well with the simulated ones for all frequency bands

    The ongoing challenge of latent tuberculosis

    No full text
    The global health community has set itself the task of eliminating tuberculosis (TB) as a public health problem by 2050. Although progress has been made in global TB control, the current decline in incidence of 2% yr(−1) is far from the rate needed to achieve this. If we are to succeed in this endeavour, new strategies to reduce the reservoir of latently infected persons (from which new cases arise) would be advantageous. However, ascertainment of the extent and risk posed by this group is poor. The current diagnostics tests (tuberculin skin test and interferon-gamma release assays) poorly predict who will develop active disease and the therapeutic options available are not optimal for the scale of the intervention that may be required. In this article, we outline a basis for our current understanding of latent TB and highlight areas where innovation leading to development of novel diagnostic tests, drug regimens and vaccines may assist progress. We argue that the pool of individuals at high risk of progression may be significantly smaller than the 2.33 billion thought to be immune sensitized by Mycobacterium tuberculosis and that identifying and targeting this group will be an important strategy in the road to elimination

    The Role of Payment for Environmental Services toward Encouraging Energy Production in Illinois State Floodplains

    Get PDF
    The general objective of this research is to analyze different land use scenarios in a specific floodplain region of Illinois that utilizes levees in district setting. The specific objective for this research is as follows: 1) Analyze the current land use of the levee district overtime based on current crop production and farm practices. 2) Analyze alternative land use based on energy crops such as switchgrass. In this study we will attempt to estimate the potential biomass supply of levees in ten counties of Illinois State. We will focus on studying fifty two levee districts that are adjacent to the Illinois River. The levees are spread to ten counties in the state of Illinois. The data this paper uses is geospatial data to measure the amount of production potential of switchgrass in levee districts

    Coherent Phonons in Bismuth Film Observed by Ultrafast Electron Diffraction

    Get PDF
    The generation of coherent phonons in polycrystalline bismuth film excited with femtosecond laser pulse is observed by ultrafast time-resolved electron diffraction. The dynamics of the diffracted intensities from the (110), (202), and (024) lattice planes show pronounced oscillations at 130-150 GHz. The origin of these coherent acoustic phonons is discussed in view of optical phonon decay into two acoustic phonons. Different drop times in the intensity of the diffraction orders are observed and interpreted as anisotropy in the energy transfer rate of coherent optical phonons

    Adaptive platform trials using multi-arm, multi-stage protocols: getting fast answers in pandemic settings [version 1; peer review: 2 approved]

    Get PDF
    Global health pandemics, such as coronavirus disease 2019 (COVID-19), require efficient and well-conducted trials to determine effective interventions, such as treatments and vaccinations. Early work focused on rapid sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), subsequent in-vitro and in-silico work, along with greater understanding of the different clinical phases of the infection, have helped identify a catalogue of potential therapeutic agents requiring assessment. In a pandemic, there is a need to quickly identify efficacious treatments, and reject those that are non-beneficial or even harmful, using randomised clinical trials. Whilst each potential treatment could be investigated across multiple, separate, competing two-arm trials, this is a very inefficient process. Despite the very large numbers of interventional trials for COVID-19, the vast majority have not used efficient trial designs. Well conducted, adaptive platform trials utilising a multi-arm multi-stage (MAMS) approach provide a solution to overcome limitations of traditional designs. The multi-arm element allows multiple different treatments to be investigated simultaneously against a shared, standard-of-care control arm. The multi-stage element uses interim analyses to assess accumulating data from the trial and ensure that only treatments showing promise continue to recruitment during the next stage of the trial. The ability to test many treatments at once and drop insufficiently active interventions significantly speeds up the rate at which answers can be achieved. This article provides an overview of the benefits of MAMS designs and successes of trials, which have used this approach to COVID-19. We also discuss international collaboration between trial teams, including prospective agreement to synthesise trial results, and identify the most effective interventions. We believe that international collaboration will help provide faster answers for patients, clinicians, and health care systems around the world, including for future waves of COVID-19, and enable preparedness for future global health pandemics
    • …
    corecore