2,230 research outputs found
Privacy of Information Sharing Schemes in a Cloud-based Multi-sensor Estimation Problem
In this paper, we consider a multi-sensor estimation problem wherein each
sensor collects noisy information about its local process, which is only
observed by that sensor, and a common process, which is simultaneously observed
by all sensors. The objective is to assess the privacy level of (the local
process of) each sensor while the common process is estimated using cloud
computing technology. The privacy level of a sensor is defined as the
conditional entropy of its local process given the shared information with the
cloud. Two information sharing schemes are considered: a local scheme, and a
global scheme. Under the local scheme, each sensor estimates the common process
based on its the measurement and transmits its estimate to a cloud. Under the
global scheme, the cloud receives the sum of sensors' measurements. It is shown
that, in the local scheme, the privacy level of each sensor is always above a
certain level which is characterized using Shannon's mutual information. It is
also proved that this result becomes tight as the number of sensors increases.
We also show that the global scheme is asymptotically private, i.e., the
privacy loss of the global scheme decreases to zero at the rate of O(1/M) where
M is the number of sensors
Sub-Inertial Gravity Modes in the B8V Star KIC 7760680 Reveal Moderate Core Overshooting and Low Vertical Diffusive Mixing
KIC 7760680 is so far the richest slowly pulsating B star, by exhibiting 36
consecutive dipole () gravity (g-) modes. The monotonically decreasing
period spacing of the series, in addition to the local dips in the pattern
confirm that KIC 7760680 is a moderate rotator, with clear mode trapping in
chemically inhomogeneous layers. We employ the traditional approximation of
rotation to incorporate rotational effects on g-mode frequencies. Our detailed
forward asteroseismic modelling of this g-mode series reveals that KIC 7760680
is a moderately rotating B star with mass M. By
simultaneously matching the slope of the period spacing, and the number of
modes in the observed frequency range, we deduce that the equatorial rotation
frequency of KIC 7760680 is 0.4805 day, which is 26\% of its Roche break
up frequency. The relative deviation of the model frequencies and those
observed is less than one percent. We succeed to tightly constrain the
exponentially-decaying convective core overshooting parameter to . This means that convective core overshooting can
coexist with moderate rotation. Moreover, models with exponentially-decaying
overshoot from the core outperform those with the classical step-function
overshoot. The best value for extra diffusive mixing in the radiatively stable
envelope is confined to (with in cm sec), which is notably smaller than theoretical
predictions.Comment: 12 Figures, 2 Tables, all data publicly available for download;
accepted for publication in Astrophysical Journa
Thermodynamics of the Antiferromagnetic Heisenberg Model on the Checkerboard Lattice
Employing numerical linked-cluster expansions (NLCEs) along with exact
diagonalizations of finite clusters with periodic boundary condition, we study
the energy, specific heat, entropy, and various susceptibilities of the
antiferromagnetic Heisenberg model on the checkerboard lattice. NLCEs, combined
with extrapolation techniques, allow us to access temperatures much lower than
those accessible to exact diagonalization and other series expansions. We find
that the high-temperature peak in specific heat decreases as the frustration
increases, consistent with the large amount of unquenched entropy in the region
around maximum classical frustration, where the nearest-neighbor and
next-nearest neighbor exchange interactions (J and J', respectively) have the
same strength, and with the formation of a second peak at lower temperatures.
The staggered susceptibility shows a change of character when J' increases
beyond 0.75J, implying the disappearance of the long-range antiferromagnetic
order at zero temperature. For J'=4J, in the limit of weakly coupled crossed
chains, we find large susceptibilities for stripe and Neel order with
Q=(pi/2,pi/2) at low temperatures with antiferromagnetic correlations along the
chains. Other magnetic and bond orderings, such as a plaquette valence-bond
solid and a crossed-dimer order suggested by previous studies, have also been
investigated.Comment: 10 pages, 13 figure
Recommended from our members
Anomaly Detection in IoT-Based PIR Occupancy Sensors to Improve Building Energy Efficiency
Separated Fringe Packet Observations with the CHARA Array II: Andromeda, HD 178911, and {\xi} Cephei
When observed with optical long-baseline interferometers (OLBI), components
of a binary star which are sufficiently separated produce their own
interferometric fringe packets; these are referred to as Separated Fringe
Packet (SFP) binaries. These SFP binaries can overlap in angular separation
with the regime of systems resolvable by speckle interferometry at single,
large-aperture telescopes and can provide additional measurements for
preliminary orbits lacking good phase coverage, help constrain elements of
already established orbits, and locate new binaries in the undersampled regime
between the bounds of spectroscopic surveys and speckle interferometry. In this
process, a visibility calibration star is not needed, and the separated fringe
packets can provide an accurate vector separation. In this paper, we apply the
SFP approach to {\omega} Andromeda, HD 178911, and {\xi} Cephei with the CLIMB
three-beam combiner at the CHARA Array. For these systems we determine
component masses and parallax of 0.9630.049 and
0.8600.051 and 39.541.85 milliarcseconds (mas) for
{\omega} Andromeda, for HD 178911 of 0.8020.055 and
0.6220.053 with 28.261.70 mas, and masses of
1.0450.031 and 0.4080.066 and
38.102.81 mas for {\xi} Cephei.Comment: 28 pages, 4 tables, 6 figures, accepted to AJ May 201
Updating ESA's Earth System Model for gravity mission simulation studies: 2. Comparison with the original model
The ability of any satellite gravity mission concept to monitor mass transport processes in the Earth system is typically tested well ahead of its implementation by means of various simulation studies. Those studies often extend from the simulation of realistic orbits and instrumental data all the way down to the retrieval of global gravity field solution time-series. Basic requirement for all these simulations are realistic representations of the spatio-temporal mass variability in the different sub-systems of the Earth, as a source model for the orbit computations. For such simulations, a suitable source model is required to represent (i) high-frequency (i.e., sub-daily to weekly) mass variability in the atmosphere and oceans, in order to realistically include the effects of temporal aliasing due to non-tidal high-frequency mass variability into the retrieved gravity fields. In parallel, (ii) low-frequency (i.e., monthly to interannual) variability needs to be modelled with realistic amplitudes, particularly at small spatial scales, in order to assess to what extent a new mission concept might provide further insight into physical processes currently not observable. The new source model documented here attempts to fulfil both requirements: Based on ECMWF’s recent atmospheric reanalysis ERA-Interim and corresponding simulations from numerical models of the other Earth system components, it offers spherical harmonic coefficients of the time-variable global gravity field due to mass variability in atmosphere, oceans, the terrestrial hydrosphere including the ice-sheets and glaciers, as well as the solid Earth. Simulated features range from sub-daily to multiyear periods with a spatial resolution of spherical harmonics degree and order 180 over a period of 12 years. In addition to the source model, a de-aliasing model for atmospheric and oceanic high-frequency variability with augmented systematic and random noise is required for a realistic simulation of the gravity field retrieval process, whose necessary error characteristics are discussed. The documentation is organized as follows: The characteristics of the updated ESM along with some basic validation are presented in Volume 1 of this report (Dobslaw et al., 2014). A detailed comparison to the original ESA ESM (Gruber et al., 2011) is provided in Volume 2 (Bergmann-Wolf et al., 2014), while Volume 3 (Forootan et al., 2014) contains a description of the strategy to derive a realistically noisy de-aliasing model for the high-frequency mass variability in atmosphere and oceans. The files of the updated ESA Earth System Model for gravity mission simulation studies are accessible at DOI:10.5880/GFZ.1.3.2014.001
Updating ESA's Earth System Model for gravity mission simulation studies: 1. Model description and validation
The ability of any satellite gravity mission concept to monitor mass transport processes in the Earth system is typically tested well ahead of its implementation by means of various simulation studies. Those studies often extend from the simulation of realistic orbits and instrumental data all the way down to the retrieval of global gravity field solution time-series. Basic requirement for all these simulations are realistic representations of the spatio-temporal mass variability in the different sub-systems of the Earth, as a source model for the orbit computations. For such simulations, a suitable source model is required to represent (i) high-frequency (i.e., subdaily to weekly) mass variability in the atmosphere and oceans, in order to realistically include the effects of temporal aliasing due to non-tidal high-frequency mass variability into the retrieved gravity fields. In parallel, (ii) low-frequency (i.e., monthly to interannual) variability needs to be modelled with realistic amplitudes, particularly at small spatial scales, in order to assess to what extent a new mission concept might provide further insight into physical processes currently not observable. The new source model documented here attempts to fulfil both requirements: Based on ECMWF’s recent atmospheric reanalysis ERA-Interim and corresponding simulations from numerical models of the other Earth system components, it offers spherical harmonic coefficients of the time-variable global gravity field due to mass variability in atmosphere, oceans, the terrestrial hydrosphere including the ice-sheets and glaciers, as well as the solid Earth. Simulated features range from sub-daily to multiyear periods with a spatial resolution of spherical harmonics degree and order 180 over a period of 12 years. In addition to the source model, a de-aliasing model for atmospheric and oceanic high-frequency variability with augmented systematic and random noise is required for a realistic simulation of the gravity field retrieval process, whose necessary error characteristics are discussed. The documentation of the updated ESA Earth System Model (updated ESM) for gravity mission simulation studies is organized as follows: The characteristics of the updated ESM along with some basic validation is presented in Volume 1. A detailed comparison to the original ESA ESM (Gruber et al., 2011) is provided in Volume 2, while Volume 3 contains the description of a strategy to derive realistic errors for the de-aliasing model of high-frequency mass variability in atmosphere and ocean
Updating ESA's Earth System Model for Gravity Mission Simulation Studies: 3. A Realistically Perturbed Non-Tidal Atmosphere and Ocean De-Aliasing Model
The ability of any satellite gravity mission concept to monitor mass transport processes in the Earth system is typically tested well ahead of its implementation by means of various simulation studies. Those studies often extend from the simulation of realistic orbits and instrumental data all the way down to the retrieval of global gravity field solution time-series. Basic requirement for all these simulations are realistic representations of the spatio-temporal mass variability in the different sub-systems of the Earth, as a source model for the orbit computations. For such simulations, a suitable source model is required to represent (i) high-frequency (i.e., sub-daily to weekly) mass variability in the atmosphere and oceans, in order to realistically include the effects of temporal aliasing due to non-tidal high-frequency mass variability into the retrieved gravity fields. In parallel, (ii) low-frequency (i.e., monthly to interannual) variability needs to be modelled with realistic amplitudes, particularly at small spatial scales, in order to assess to what extent a new mission concept might provide further insight into physical processes currently not observable. The new source model documented here attempts to fulfil both requirements: Based on ECMWF’s recent atmospheric reanalysis ERA-Interim and corresponding simulations from numerical models of the other Earth system components, it offers spherical harmonic coefficients of the time-variable global gravity field due to mass variability in atmosphere, oceans, the terrestrial hydrosphere including the ice-sheets and glaciers, as well as the solid Earth. Simulated features range from sub-daily to multiyear periods with a spatial resolution of spherical harmonics degree and order 180 over a period of 12 years. In addition to the source model, a de-aliasing model for atmospheric and oceanic high-frequency variability with augmented systematic and random noise is required for a realistic simulation of the gravity field retrieval process, whose necessary error characteristics are discussed. The documentation is organized as follows: The characteristics of the updated ESM along with some basic validation are presented in Volume 1 of this report (Dobslaw et al., 2014). A detailed comparison to the original ESA ESM (Gruber et al., 2011) is provided in Volume 2 (Bergmann-Wolf et al., 2014), while Volume 3 (Forootan et al., 2014) contains a description of the strategy to derive a realistically noisy de-aliasing model for the high-frequency mass variability in atmosphere and oceans. The files of the updated ESA Earth System Model for gravity mission simulation studies are accessible at DOI:10.5880/GFZ.1.3.2014.001
- …
