15,865 research outputs found
Public Health and Epidemiology Informatics: Recent Research and Trends in the United States
Objectives
To survey advances in public health and epidemiology informatics over the past three years.
Methods
We conducted a review of English-language research works conducted in the domain of public health informatics (PHI), and published in MEDLINE between January 2012 and December 2014, where information and communication technology (ICT) was a primary subject, or a main component of the study methodology. Selected articles were synthesized using a thematic analysis using the Essential Services of Public Health as a typology.
Results
Based on themes that emerged, we organized the advances into a model where applications that support the Essential Services are, in turn, supported by a socio-technical infrastructure that relies on government policies and ethical principles. That infrastructure, in turn, depends upon education and training of the public health workforce, development that creates novel or adapts existing infrastructure, and research that evaluates the success of the infrastructure. Finally, the persistence and growth of infrastructure depends on financial sustainability.
Conclusions
Public health informatics is a field that is growing in breadth, depth, and complexity. Several Essential Services have benefited from informatics, notably, “Monitor Health,” “Diagnose & Investigate,” and “Evaluate.” Yet many Essential Services still have not yet benefited from advances such as maturing electronic health record systems, interoperability amongst health information systems, analytics for population health management, use of social media among consumers, and educational certification in clinical informatics. There is much work to be done to further advance the science of PHI as well as its impact on public health practice
Fluid thrust control system
A pure fluid thrust control system is described for a pump-fed, regeneratively cooled liquid propellant rocket engine. A proportional fluid amplifier and a bistable fluid amplifier control overshoot in the starting of the engine and take it to a predetermined thrust. An ejector type pump is provided in the line between the liquid hydrogen rocket nozzle heat exchanger and the turbine driving the fuel pump to aid in bringing the fluid at this point back into the regular system when it is not bypassed. The thrust control system is intended to function in environments too severe for mechanical controls
The first-mover advantage in scientific publication
Mathematical models of the scientific citation process predict a strong
"first-mover" effect under which the first papers in a field will, essentially
regardless of content, receive citations at a rate enormously higher than
papers published later. Moreover papers are expected to retain this advantage
in perpetuity -- they should receive more citations indefinitely, no matter how
many other papers are published after them. We test this conjecture against
data from a selection of fields and in several cases find a first-mover effect
of a magnitude similar to that predicted by the theory. Were we wearing our
cynical hat today, we might say that the scientist who wants to become famous
is better off -- by a wide margin -- writing a modest paper in next year's
hottest field than an outstanding paper in this year's. On the other hand,
there are some papers, albeit only a small fraction, that buck the trend and
attract significantly more citations than theory predicts despite having
relatively late publication dates. We suggest that papers of this kind, though
they often receive comparatively few citations overall, are probably worthy of
our attention.Comment: 7 pages, 3 figure
Uncertainty Relation Revisited from Quantum Estimation Theory
By invoking quantum estimation theory we formulate bounds of errors in
quantum measurement for arbitrary quantum states and observables in a
finite-dimensional Hilbert space. We prove that the measurement errors of two
observables satisfy Heisenberg's uncertainty relation, find the attainable
bound, and provide a strategy to achieve it.Comment: manuscript including 4 pages and 2 figure
Photometric and spectroscopic variability of 53 Per
A new investigation of the variability of the SPB-type star 53 Per is
presented. The analysis of the BRITE photometry allowed us to determine eight
independent frequencies and the combination one. Five of these frequencies and
the combination one were not known before. In addition, we gathered more than
1800 new moderate and high-resolution spectra of 53 Per spread over
approximately six months. Their frequency analysis revealed four independent
frequencies and the combination one, all consistent with the BRITE results.Comment: 2 pages, accepted for publication in the Proceedings of the PAS
(Proc. of the 2nd BRITE Science conference, Innsbruck
Resolution of Nested Neuronal Representations Can Be Exponential in the Number of Neurons
Collective computation is typically polynomial in the number of computational elements, such as transistors or neurons, whether one considers the storage capacity of a memory device or the number of floating-point operations per second of a CPU. However, we show here that the capacity of a computational network to resolve real-valued signals of arbitrary dimensions can be exponential in N, even if the individual elements are noisy and unreliable. Nested, modular codes that achieve such high resolutions mirror the properties of grid cells in vertebrates, which underlie spatial navigation
Optimal Population Codes for Space: Grid Cells Outperform Place Cells
Rodents use two distinct neuronal coordinate systems to estimate their position: place fields in the hippocampus and grid fields in the entorhinal cortex. Whereas place cells spike at only one particular spatial location, grid cells fire at multiple sites that correspond to the points of an imaginary hexagonal lattice. We study how to best construct place and grid codes, taking the probabilistic nature of neural spiking into account. Which spatial encoding properties of individual neurons confer the highest resolution when decoding the animal’s position from the neuronal population response? A priori, estimating a spatial position from a grid code could be ambiguous, as regular periodic lattices possess translational symmetry. The solution to this problem requires lattices for grid cells with different spacings; the spatial resolution crucially depends on choosing the right ratios of these spacings across the population. We compute the expected error in estimating the position in both the asymptotic limit, using Fisher information, and for low spike counts, using maximum likelihood estimation. Achieving high spatial resolution and covering a large range of space in a grid code leads to a trade-off: the best grid code for spatial resolution is built of nested modules with different spatial periods, one inside the other, whereas maximizing the spatial range requires distinct spatial periods that are pairwisely incommensurate. Optimizing the spatial resolution predicts two grid cell properties that have been experimentally observed. First, short lattice spacings should outnumber long lattice spacings. Second, the grid code should be self-similar across different lattice spacings, so that the grid field always covers a fixed fraction of the lattice period. If these conditions are satisfied and the spatial “tuning curves” for each neuron span the same range of firing rates, then the resolution of the grid code easily exceeds that of the best possible place code with the same number of neurons
The non-destructive study of museums objects by means of neutrons imaging methods and results of investigations
Based on experience from many kinds of investigations with neutron imaging methods (radiography, tomography,
time-dependent studies) and in comparison to conventional X-ray methods, the authors discuss the potential of future
improved studies for cultural-heritage purposes. Whereas the focus of the paper is on the imaging aspect, other established techniques as neutron activation analysis
(NAA), prompt gamma activation analysis (PGAA),
neutron-induced autoradiography and neutron scattering are mentioned too. Although a great potential for studies similar to those described in the paper exists, a considerable effort is needed to define the best-suited methods for the dedicated cultural historical request. A
real barrier between the experts at large research facilities (as, e.g., neutron sources are) and the partners from the museums side has to be overcome in order to solve
the problems. A joint European approach will help in this respect
- …