88 research outputs found

    Data-Driven Key Performance Indicators and Datasets for Building Energy Flexibility: A Review and Perspectives

    Get PDF
    Energy flexibility, through short-term demand-side management (DSM) and energy storage technologies, is now seen as a major key to balancing the fluctuating supply in different energy grids with the energy demand of buildings. This is especially important when considering the intermittent nature of ever-growing renewable energy production, as well as the increasing dynamics of electricity demand in buildings. This paper provides a holistic review of (1) data-driven energy flexibility key performance indicators (KPIs) for buildings in the operational phase and (2) open datasets that can be used for testing energy flexibility KPIs. The review identifies a total of 81 data-driven KPIs from 91 recent publications. These KPIs were categorized and analyzed according to their type, complexity, scope, key stakeholders, data requirement, baseline requirement, resolution, and popularity. Moreover, 330 building datasets were collected and evaluated. Of those, 16 were deemed adequate to feature building performing demand response or building-to-grid (B2G) services. The DSM strategy, building scope, grid type, control strategy, needed data features, and usability of these selected 16 datasets were analyzed. This review reveals future opportunities to address limitations in the existing literature: (1) developing new data-driven methodologies to specifically evaluate different energy flexibility strategies and B2G services of existing buildings; (2) developing baseline-free KPIs that could be calculated from easily accessible building sensors and meter data; (3) devoting non-engineering efforts to promote building energy flexibility, such as designing utility programs, standardizing energy flexibility quantification and verification processes; and (4) curating datasets with proper description for energy flexibility assessments.Comment: 30 pages, 14 figures, 4 table

    Primary PEComa of the bladder treated with primary excision and adjuvant interferon-alpha immunotherapy: a case report

    Get PDF
    BACKGROUND: Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal neoplasms of uncertain malignant potential, which have in common the co-expression of muscle and melanocytic immunohistochemical markers. CASE PRESENTATION: A 48-year-old man presented with dysuria, passage of urinary sediment and lower abdominal discomfort. A three centimeter mass was identified by cystoscopy in the posterior midline of the bladder. Computerized tomography suggested an enterovesical fistula. The patient underwent laparotomy, partial cystectomy and partial small bowel resection. Pathological examination revealed PEComa of the bladder. The patient underwent adjuvant interferon-α immunotherapy. Subsequent follow-up procedures, including cystoscopy and imaging, have not revealed evidence of recurrence. The patient is clinically free of disease 48 months after surgery. CONCLUSION: This case represents the second documented PEComa of bladder and demonstrates that adjuvant therapies, including anti-angiogenic and immunotherapy, may be considered for patients with locally advanced or metastatic genitourinary PEComa

    NOV/CCN3 attenuates inflammatory pain through regulation of matrix metalloproteinases-2 and -9

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sustained neuroinflammation strongly contributes to the pathogenesis of pain. The clinical challenge of chronic pain relief led to the identification of molecules such as cytokines, chemokines and more recently matrix metalloproteinases (MMPs) as putative therapeutic targets. Evidence points to a founder member of the matricial CCN family, NOV/CCN3, as a modulator of these inflammatory mediators. We thus investigated the possible involvement of NOV in a preclinical model of persistent inflammatory pain.</p> <p>Methods</p> <p>We used the complete Freund's adjuvant (CFA)-induced model of persistent inflammatory pain and cultured primary sensory neurons for <it>in vitro </it>experiments. The mRNA expression of NOV and pro-inflammatory factors were measured with real-time quantitative PCR, CCL2 protein expression was assessed using ELISA, MMP-2 and -9 activities using zymography. The effect of drugs on tactile allodynia was evaluated by the von Frey test.</p> <p>Results</p> <p>NOV was expressed in neurons of both dorsal root ganglia (DRG) and dorsal horn of the spinal cord (DHSC). After intraplantar CFA injection, NOV levels were transiently and persistently down-regulated in the DRG and DHSC, respectively, occurring at the maintenance phase of pain (15 days). NOV-reduced expression was restored after treatment of CFA rats with dexamethasone. <it>In vitro</it>, results based on cultured DRG neurons showed that siRNA-mediated inhibition of NOV enhanced IL-1β- and TNF-α-induced MMP-2, MMP-9 and CCL2 expression whereas NOV addition inhibited TNF-α-induced MMP-9 expression through β<sub>1 </sub>integrin engagement. <it>In vivo</it>, the intrathecal delivery of MMP-9 inhibitor attenuated mechanical allodynia of CFA rats. Importantly, intrathecal administration of NOV siRNA specifically led to an up-regulation of MMP-9 in the DRG and MMP-2 in the DHSC concomitant with increased mechanical allodynia. Finally, NOV intrathecal treatment specifically abolished the induction of MMP-9 in the DRG and, MMP-9 and MMP-2 in the DHSC of CFA rats. This inhibitory effect on MMP is associated with reduced mechanical allodynia.</p> <p>Conclusions</p> <p>This study identifies NOV as a new actor against inflammatory pain through regulation of MMPs thus uncovering NOV as an attractive candidate for therapeutic improvement in pain relief.</p

    Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases

    Get PDF
    BACKGROUND: Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25–30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome. METHODS: We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants. RESULTS: Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving. CONCLUSIONS: Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing

    Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases

    Get PDF
    BACKGROUND: Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25-30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome.METHODS: We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants.RESULTS: Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving.CONCLUSIONS: Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing.</p

    Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies

    Full text link
    • …
    corecore