1,186 research outputs found
Powered-lift aircraft technology
Powered lift aircraft have the ability to vary the magnitude and direction of the force produced by the propulsion system so as to control the overall lift and streamwise force components of the aircraft, with the objective of enabling the aircraft to operate from minimum sized terminal sites. Power lift technology has contributed to the development of the jet lift Harrier and to the forth coming operational V-22 Tilt Rotor and the C-17 military transport. This technology will soon be expanded to include supersonic fighters with short takeoff and vertical landing capability, and will continue to be used for the development of short- and vertical-takeoff and landing transport. An overview of this field of aeronautical technology is provided for several types of powered lift aircraft. It focuses on the description of various powered lift concepts and their operational capability. Aspects of aerodynamics and flight controls pertinent to powered lift are also discussed
The lift-fan aircraft: Lessons learned
This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned
Large-scale wind-tunnel tests of descent performance of an airplane model with a tilt wing and differential propeller thrust
Wind tunnel tests of wing stall, performance, and longitudinal stability & control of large model v/stol tilt wing transport aircraf
The lift-fan powered-lift aircraft concept: Lessons learned
This is one of a series of reports on the lessons learned from past research related to lift-fan aircraft concepts. An extensive review is presented of the many lift-fan aircraft design studies conducted by both government and industry over the past 45 years. Mission applications and design integration including discussions on manifolding hot gas generators, hot gas dusting, and energy transfer control are addressed. Past lift-fan evaluations of the Avrocar are discussed. Lessons learned from these past efforts are identified
Method of statistical filtering
Minimal formula for bounding the cross correlation between a random forcing function and the state error when this correlation is unknown is used in optimal linear filter theory applications. Use of the bound results in overestimation of the estimation-error covariance
Noise gates for decoherent quantum circuits
A major problem in exploiting microscopic systems for developing a new
technology based on the principles of Quantum Information is the influence of
noise which tends to work against the quantum features of such systems. It
becomes then crucial to understand how noise affects the evolution of quantum
circuits: several techniques have been proposed among which stochastic
differential equations (SDEs) can represent a very convenient tool. We show how
SDEs naturally map any Markovian noise into a linear operator, which we will
call a noise gate, acting on the wave function describing the state of the
circuit, and we will discuss some examples. We shall see that these gates can
be manipulated like any standard quantum gate, thus simplifying in certain
circumstances the task of computing the overall effect of the noise at each
stage of the protocol. This approach yields equivalent results to those derived
from the Lindblad equation; yet, as we show, it represents a handy and fast
tool for performing computations, and moreover, it allows for fast numerical
simulations and generalizations to non Markovian noise. In detail we review the
depolarizing channel and the generalized amplitude damping channel in terms of
this noise gate formalism and show how these techniques can be applied to any
quantum circuit.Comment: 10 pages, 4 figures: journal reference added + some typos correcte
In vivo expression and purification of aptamer-tagged small RNA regulators
Small non-coding RNAs (sRNAs) are an emerging class of post-transcriptional regulators of bacterial gene expression. To study sRNAs and their potential protein interaction partners, it is desirable to purify sRNAs from cells in their native form. Here, we used RNA-based affinity chromatography to purify sRNAs following their expression as aptamer-tagged variants in vivo. To this end, we developed a family of plasmids to express sRNAs with any of three widely used aptamer sequences (MS2, boxB, eIF4A), and systematically tested how the aptamer tagging impacted on intracellular accumulation and target regulation of the Salmonella GcvB, InvR or RybB sRNAs. In addition, we successfully tagged the chromosomal rybB gene with MS2 to observe that RybB-MS2 is fully functional as an envelope stress-induced repressor of ompN mRNA following induction of sigmaE. We further demonstrate that the common sRNA-binding protein, Hfq, co-purifies with MS2-tagged sRNAs of Salmonella. The presented affinity purification strategy may facilitate the isolation of in vivo assembled sRNA-protein complexes in a wide range of bacteria
Recommended from our members
Plasmon response evaluation based on image-derived arbitrary nanostructures
The optical response of realistic 3D plasmonic substrates composed of randomly shaped particles of different size and interparticle distance distributions in addition to nanometer scale surface roughness is intrinsically challenging to simulate due to computational limitations. Here, we present a Finite Element Method (FEM)-based methodology that bridges in-depth theoretical investigations and experimental optical response of plasmonic substrates composed of such silver nanoparticles. Parametrized scanning electron microscopy (SEM) images of surface enhanced Raman spectroscopy (SERS) active substrate and tip-enhanced Raman spectroscopy (TERS) probes are used to simulate the far-and near-field optical response. Far-field calculations are consistent with experimental dark field spectra and charge distribution images reveal for the first time in arbitrary structures the contributions of interparticle hybridized modes such as sub-radiant and super-radiant modes that also locally organize as basic units for Fano resonances. Near-field simulations expose the spatial position-dependent impact of hybridization on field enhancement. Simulations of representative sections of TERS tips are shown to exhibit the same unexpected coupling modes. Near-field simulations suggest that these modes can contribute up to 50% of the amplitude of the plasmon resonance at the tip apex but, interestingly, have a small effect on its frequency in the visible range. The band position is shown to be extremely sensitive to particle nanoscale roughness, highlighting the necessity to preserve detailed information at both the largest and the smallest scales. To the best of our knowledge, no currently available method enables reaching such a detailed description of large scale realistic 3D plasmonic systems
Recommended from our members
A classical description of subnanometer resolution by atomic features in metallic structures
Recent experiments have evidenced sub-nanometer resolution in plasmonic-enhanced probe spectroscopy. Such a high resolution cannot be simply explained using the commonly considered radii of metallic nanoparticles on plasmonic probes. In this contribution the effects of defects as small as a single atom found on spherical plasmonic particles acting as probing tips are investigated in connection with the spatial resolution provided. The presence of abundant edge and corner sites with atomic scale dimensions in crystalline metallic nanoparticles is evident from transmission electron microscopy (TEM) images. Electrodynamic calculations based on the Finite Element Method (FEM) are implemented to reveal the impact of the presence of such atomic features in probing tips on the lateral spatial resolution and field localization. Our analysis is developed for three different configurations, and under resonant and non-resonant illumination conditions, respectively. Based on this analysis, the limits of field enhancement, lateral resolution and field confinement in plasmon-enhanced spectroscopy and microscopy are inferred, reaching values below 1 nanometer for reasonable atomic sizes
Time Evolution of the External Field Problem in QED
We construct the time-evolution for the second quantized Dirac equation
subject to a smooth, compactly supported, time dependent electromagnetic
potential and identify the degrees of freedom involved. Earlier works on this
(e.g. Ruijsenaars) observed the Shale-Stinespring condition and showed that the
one-particle time-evolution can be lifted to Fock space if and only if the
external field had zero magnetic components. We scrutinize the idea, observed
earlier by Fierz and Scharf, that the time-evolution can be implemented between
time varying Fock spaces. In order to define these Fock spaces we are led to
consider classes of reference vacua and polarizations. We show that this
implementation is up to a phase independent of the chosen reference vacuum or
polarization and that all induced transition probabilities are well-defined and
unique.Comment: 60 pages, 1 figure, revised introduction, summary of results added,
typos correcte
- …