19,759 research outputs found

    Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold

    Full text link
    We have investigated the non-classical response of solid 4He confined in porous gold set to torsional oscillation. When solid helium is grown rapidly, nearly 7% of the solid helium appears to be decoupled from the oscillation below about 200 mK. Dissipation appears at temperatures where the decoupling shows maximum variation. In contrast, the decoupling is substantially reduced in slowly grown solid helium. The dynamic response of solid helium was also studied by imposing a sudden increase in the amplitude of oscillation. Extended relaxation in the resonant period shift, suggesting the emergence of the pinning of low energy excitations, was observed below the onset temperature of the non-classical response. The motion of a dislocation or a glassy solid is restricted in the entangled narrow pores and is not likely responsible for the period shift and long relaxation

    Work distribution for the driven harmonic oscillator with time-dependent strength: Exact solution and slow driving

    Full text link
    We study the work distribution of a single particle moving in a harmonic oscillator with time-dependent strength. This simple system has a non-Gaussian work distribution with exponential tails. The time evolution of the corresponding moment generating function is given by two coupled ordinary differential equations that are solved numerically. Based on this result we study the behavior of the work distribution in the limit of slow but finite driving and show that it approaches a Gaussian distribution arbitrarily well

    Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois

    Get PDF
    For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds

    Effects of pressure on the ferromagnetic state of the CDW compound SmNiC2

    Full text link
    We report the pressure response of charge-density-wave (CDW) and ferromagnetic (FM) phases of the rare-earth intermetallic SmNiC2 up to 5.5 GPa. The CDW transition temperature (T_{CDW}), which is reflected as a sharp inflection in the electrical resistivity, is almost independent of pressure up to 2.18 GPa but is strongly enhanced at higher pressures, increasing from 155.7 K at 2.2 GPa to 279.3 K at 5.5 GPa. Commensurate with the sharp increase in T_{CDW}, the first-order FM phase transition, which decreases with applied pressure, bifurcates into the upper (T_{M1}) and lower (T_c) phase transitions and the lower transition changes its nature to second order above 2.18 GPa. Enhancement both in the residual resistivity and the Fermi-liquid T^2 coefficient A near 3.8 GPa suggests abundant magnetic quantum fluctuations that arise from the possible presence of a FM quantum critical point.Comment: 5 pages, 5 figure

    Compatible pairs of orthogonal polynomials

    Get PDF
    19 pages, no figures.-- MSC1991 code: 33C45.MR#: MR1736624 (2001a:33009)Zbl#: Zbl 0944.33012We find necessary and sufficient conditions for an orthogonal polynomial system to be compatible with another orthogonal polynomial system. As applications, we find new characterizations of semi-classical and classical orthogonal polynomials.The work of D. H. Kim and K. H. Kwon was partially supported by KOSEF (98-0701-03-01-5) and GARC at Seoul National University. The work of F. Marcellán was partially supported by Dirección General de Enseñanza Superior (DGES) of Spain under grant PB96-0120-C03-0l.Publicad
    corecore