519 research outputs found

    Serum N-Terminal propeptide of collagen type I is associated with the number of bone Metastases in breast and prostate cancer and correlates to other bone related markers

    Get PDF
    Background A number of biomarkers have been proven potentially useful for their ability to indicate bone metastases (BM) in cancer patients. The aim of this study was to investigate the relative utility of a newly developed N-terminal propeptide of collagen type I (PINP) human serum assay for the detection of BM in cancer patients. This assay has a corresponding rat PINP assay which in the future might help in translational science between rodent and human trials. Methods Participants were 161 prostate, lung and breast cancer patients stratified by number of BM(Soloway score). PINP was assessed and correlated to number of BM. Additionally, the PINP marker was correlated to bone resorption of young (ALPHA CTX-I)- and aged bone (BETA CTX-I); number of osteoclasts (Tartrate-resistant acid phosphatase 5b, TRACP5B) and osteoclast activity (CTX-I/TRACP5B). Results PINP was significantly elevated in breast- and prostate cancer patients +BM, compared to –BM ( P < 0.001), however not in lung cancer patients. A strong linear association was seen between PINP and the number of BMs. Significant elevation of PINP was observed at Soloway scores 1–4 (<0 BM) compared with score 0 (0 BM) ( P < 0.001). The correlation between bone resorption of young bone or aged bone and bone formation was highly significant in patients +BM and –BM ( P < 0.0001). Conclusions Data suggest that the present PINP potentially could determine skeletal involvement in patients with breast or prostate cancer. Correlations suggested that coupling between bone resorption and bone formation was maintained in breast- and prostate cancer patients

    Retinoid metabolism and all-trans retinoic acid-induced growth inhibition in head and neck squamous cell carcinoma cell lines.

    Get PDF
    Retinoids can reverse potentially premalignant lesions and prevent second primary tumours in patients with head and neck squamous cell carcinoma (HNSCC). Furthermore, it has been reported that acquired resistance to all-trans retinoic acid (RA) in leukaemia is associated with decreased plasma peak levels, probably the result of enhanced retinoid metabolism. The aim of this study was to investigate the metabolism of retinoids and relate this to growth inhibition in HNSCC. Three HNSCC cell lines were selected on the basis of a large variation in the all-trans RA-induced growth inhibition. Cells were exposed to 9.5 nM (radioactive) for 4 and 24 h, and to 1 and 10 microM (nonradioactive) all-trans RA for 4, 24, 48 and 72 h, and medium and cells were analysed for retinoid metabolites. At all concentrations studied, the amount of growth inhibition was proportional to the extent at which all-trans-, 13- and 9-cis RA disappeared from the medium as well as from the cells. This turnover process coincided with the formation of a group of as yet unidentified polar retinoid metabolites. The level of mRNA of cellular RA-binding protein II (CRABP-II), involved in retinoid homeostasis, was inversely proportional to growth inhibition. These findings indicate that for HNSCC retinoid metabolism may be associated with growth inhibition

    Reconfigurable Photonic Crystal Cavities

    Get PDF
    Photonic crystals are optical structures that contain a periodic modulation of their refractive index, allowing them to control light in recent years of an unprecedented capacity. Photonic crystals may take on a variety of configurations, in particular the photonic crystal cavity, which may “hold” light in small volumes comparable to the light’s wavelength. This capability to spatially confine light opens up countless possibilities to explore for research in telecommunications, quantum electrodynamics experiments and high-resolution sensor applications. However, the vast functionality potentially made available by photonic crystal cavities is limited due to the difficulty in redefining photonic crystal components once they are formed in their (typically) solid material. The work presented in this thesis investigates several approaches to overcome this issue by reconfiguring photonic crystal cavities

    MicroRNA-106b~25 cluster is upregulated in relapsed MLL-rearranged pediatric acute myeloid leukemia

    Get PDF
    The most important reason for therapy failure in pediatric acute myeloid leukemia (AML) is relapse. In order to identify miRNAs that contribute to the clonal evolution towards relapse in pediatric AML, miRNA expression profiling of 127 de novo pediatric AML cases were used. In the diagnostic phase, no miRNA signatures could be identified that were predictive for relapse occurrence, in a large pediatric cohort, nor in a nested mixed lineage leukemia (MLL)-rearranged pediatric cohort. AML with MLL- rearrangements are found in 15-20% of all pediatric AML samples, and reveal a relapse rate up to 50% for certain translocation partner subgroups. Therefore, microRNA expression profiling of six paired initial diagnosis-relapse MLL-rearranged pediatric AML samples (test cohort) and additional eight paired initial diagnosisrelapse samples with MLL-rearrangements (validation cohort) was performed. A list of 53 differentially expressed miRNAs was identified of which the miR-106b~25 cluster, located in intron 13 of MCM7, was the most prominent. These differentially expressed miRNAs however could not predict a relapse in de novo AML samples with MLLrearrangements at diagnosis. Furthermore, higher mRNA expression of both MCM7 and its upstream regulator E2F1 was found in relapse samples with MLL-rearrangements. In conclusion, we identified the miR-106b~25 cluster to be upregulated in relapse pediatric AML with MLL-rearrangements

    Applicability and reproducibility of acute myeloid leukaemia stem cell assessment in a multi-centre setting

    Get PDF
    Leukaemic stem cells (LSC) have been experimentally defined as the leukaemia-propagating population and are thought to be the cellular reservoir of relapse in acute myeloid leukaemia (AML). Therefore, LSC measurements are warranted to facilitate accurate risk stratification. Previously, we published the composition of a one-tube flow cytometric assay, characterised by the presence of 13 important membrane markers for LSC detection. Here we present the validation experiments of the assay in several large AML research centres, both in Europe and the United States. Variability within instruments and sample processing showed high correlations between different instruments (Rpearson &nbsp;&gt;&nbsp;0·91, P&nbsp;&lt;&nbsp;0·001). Multi-centre testing introduced variation in reported LSC percentages but was found to be below the clinical relevant threshold. Clear gating protocols resulted in all laboratories being able to perform LSC assessment of the validation set. Participating centres were nearly unanimously able to distinguish LSChigh (&gt;0·03% LSC) from LSClow (&lt;0·03% LSC) despite inter-laboratory variation in reported LSC percentages. This study proves that the LSC assay is highly reproducible. These results together with the high prognostic impact of LSC load at diagnosis in AML patients render the one-tube LSC assessment a good marker for future risk classification
    • …
    corecore