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Abstract 
 

 

Photonic crystals are optical structures that contain a periodic modulation of their 
refractive index, allowing them to control light in recent years of an unprecedented 
capacity. Photonic crystals may take on a variety of configurations, in particular the 
photonic crystal cavity, which may “hold” light in small volumes comparable to the 
light’s wavelength. This capability to spatially confine light opens up countless 
possibilities to explore for research in telecommunications, quantum electrodynamics 
experiments and high-resolution sensor applications. However, the vast functionality 
potentially made available by photonic crystal cavities is limited due to the difficulty 
in redefining photonic crystal components once they are formed in their (typically) 
solid material. The work presented in this thesis investigates several approaches to 
overcome this issue by reconfiguring photonic crystal cavities. 

Initially, a technique to accurately probe photonic crystal waveguides and cavities via 
evanescent coupling from a silica fibre nanowire is developed. Thus equipped with 
the capability to monitor such structures, the properties of photonic crystal cavities are 
adjusted in three separate ways: (i) by tuning with the presence of a nanowire, (ii) by 
exploiting the photonic crystal’s host material photosensitivity, and (iii) by 
microfluidic infiltration of select holes in a slab photonic crystal. 

High insertion efficiency into a photonic crystal waveguide is achieved via the 
evanescent coupling fibre technique. A silica glass single mode fibre is tapered from 
its initial dimensions of 125 µm down to an outer diameter of ~1 µm. The “nanowire” 
acts as the core for light to be guided, with the surrounding air forming its cladding. 
The nature of this guiding scheme results in a sensitive evanescent field that can 
strongly interact with its environment. A method to localise coupling to photonic 
crystal cavities is explored by curving the nanowire into a loop. The curvature offers 
an additional capability to characterise the dispersion of photonic crystal structures 
due to its expanding the k-space distribution of the nanowire modes. 

Evanescent coupling is utilised to investigate ultra-small (0.5 (λ/n)3), InAs/InP 
quantum dot photonic crystal cavities. The technique enables independent tuning of 
the Q-factor and wavelength of the cavity mode. This gives rise to the first method to 
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reconfigure photonic crystal cavities of the thesis. In the context of quantum dot 
photonic crystal cavities, evanescent coupling allows for optimisation of the 
extraction efficiency whilst maintaining a high Purcell Factor. It also allows matching 
of a cavity mode with a spectrally misaligned quantum dot without changing the 
photonic crystal geometry or degrading the Q-factor. A 3 nm shift is observed. 

The photosensitivity of Ge33As12Se55 chalcogenide glass is investigated for 
reconfiguring photonic crystals. A change in refractive index and volume of material 
in response to exposure to 633 nm light is observed. The resulting shift in wavelength 
is greater than 5 nm for the resonant coupling wavelength between the evanescent 
coupling fibre and the modes of the W1 waveguide. This represents the first proof of 
concept demonstration of the photosensitive post-processing of a planar photonic 
crystal device.  

Post-processed and reconfigurable photonic crystal double heterostructure cavities are 
achieved via microfluidic infiltration of select holes in a planar structure. A 
significant number of results are reported. Experimental Fabry-Pérot signatures 
associated with modes of the induced cavities are in good agreement with numerical 
simulations. Quality factors of up to Q = 5.7×104 are observed. The microfluidic 
cavities are configured spectrally and spatially by adjusting the lengths of the cavities 
in steps of several microns. The behaviour of Q-factors associated with the 
microfluidic cavities in terms of both wavelength and cavity length is reported. The 
cavity writing technique allows for tolerances in the infiltration process. Furthermore, 
the samples are immersed in toluene, erasing the fluid from the photonic crystal holes 
and demonstrating the complete reconfigurability that the microfluidic infiltration 
scheme offers. 
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Chapter 1 
 
Introduction 
 

1.1 Breakthroughs in material technology 

Breakthroughs in material understanding have revolutionised technology throughout 
human history. The emergence of our ancestors into the Iron Age from the Stone Age 
marks a steadily increasing recognition of the utility of naturally occurring materials. 
Engineers soon discovered that additional advantages could be achieved by meddling 
with existing materials into more optimised forms, such as bronze alloys and concrete. 
Today, our society has access to a broad scope of man-made materials with selectable 
mechanical properties thanks to advances made in metallurgy, ceramics and polymers. 

The twentieth century saw material advances expand their influence over electrical 
properties. Breakthroughs in semiconductor physics allowed for rapid and dynamic 
alterations of a material’s conductivity, giving rise to the transistor – the fundamental 
building block of electronics. Societal impact resulting from the electronic revolution 
is difficult to overstate, with scores of electronic devices pervading many facets of 
daily living.  

The last several decades have seen material influences extend yet further by 
controlling their optical properties. Whilst there were early advances in the form of 
mirrors, windows and spectacles, it was not until the development of the laser and 
fibre-optic cable that technological breakthroughs in optics truly began to shine. 
Recent years have observed the development of photonic crystals that can perfectly 
reflect or direct light. Indeed, a form of photonic crystal structure known as the 
photonic crystal cavity can even confine light within a nano-scale volume. A broad 
scope of applications and research tools are currently being explored with photonic 
crystal cavities, ranging from chip-based microprocessors to quantum 
electrodynamics experiments.  
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Figure 1.1. Materials to influence optics. (a) Image of a handful of optical 
fibres. This quaint amount of optical fibre contains enough transmission 
bandwidth capacity to meet the entire planet’s demands for information. 
(http://www.techeblog.com/index.php/tech-gadget/how-its-made-optical-fiber) (b) Scanning 
electron microscope (SEM) image of a photonic crystal in polymer. 
(http://rryoo.kaist.ac.kr/res-3.html)  

Increasing research interests in photonic crystal cavities have also given rise to a 
pursuit for their reconfigurability. The nanometer-scale parameters of photonic 
crystals in general make their fabrication cumbersome and complex, especially so 
when considering that cavities within photonic crystals are typically formed by 
extremely subtle variations in the photonic crystal geometry. An appropriate post-
processing technique to correct for fabrication tolerances or optimise cavity 
parameters would therefore be greatly beneficial. Unfortunately, the capability to alter 
the otherwise fixed parameters in photonic crystals is certainly not trivial, as the solid 
material from which they are made allows for few options to reconfigure them. 
Despite this, the work contained in this thesis focuses on novel techniques to 
reconfigure photonic crystal cavities, aiming to promote an additional dimension to 
their versatility for the suite of applications to which they show remarkable promise. 

1.2 Photonic crystals 

Photonic crystals are periodic structures that affect the propagation of electromagnetic 
waves. Their phenomenon manifests naturally – such as in the play of colour on opal 
gemstones and iridescent butterfly wings. However, it is the artificial form of 
photonic crystals that receives the greatest research interest. Recent advances in 
lithographic techniques have enabled the engineering of photonic crystal properties on 
the nanometre-scale, allowing them to control visible and infrared light. This 
newfound capability has resulted in photonic crystals emerging as a promising tool for 
an extensive list of applications, such as ultra-fast information processing, integrated 
sensing architectures and research into fundamental light-matter interactions. 

 

(a) (b) 
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Figure 1.2. Naturally-occurring photonic crystals. (a) Image of an opal 
gemstone (http://opaltreasures-rainbowdreams.com/shop/index.php?cPath=22_82). The 
iridescent play of colour on its surface is a result of the gem’s inherent 
periodic lattice structure. (b) Image of a genus morpho butterfly. 
(http://technology.newscientist.com/article/dn10006) These butterflies have a periodic 
cell structure within their wings that give rise to the striking iridescent 
colouration. 

Science has studied the behaviour of photonic crystals for the last 100 years, although 
the term was first used after Eli Yablonovitch and Sajeev John published two 
milestone papers in 1987 [2, 3]. Prior to this, photonic crystals in the form of one-
dimensional multi-layer dielectric stacks, such as the Bragg mirror, were studied in 
great detail. Lord Rayleigh showed in 1887 [4] that multi-layer dielectric stacks 
possess a spectral range of large reflectivity, which today is known as a photonic 
band-gap. This prevention of photon transmittance through a material is essentially 
the underlying basis behind the practical applications of photonic crystals.  

The photonic crystal operating principle is analogous to the way in which the periodic 
potential of a semiconductor material affects electron propagation. Forbidden and 
allowed energy bands are defined in a photonic crystal by periodic modulation of its 
dielectric constant (i.e. refractive index). Providing sufficient contrast between the 
refractive indices and the absorption of the materials is minimal, high reflectivity can 
be obtained. 

We are interested in two-dimensional (2D) photonic crystals, where the periodic 
modulation of refractive index is transposed onto a planar geometry [5, 6]. From this, 
two-dimensional photonic crystals can be divided into two general categories: low 
refractive index “holes” in a higher refractive index slab, or high refractive index 
“rods” in a lower refractive index environment (such as air). The research contained 
in this thesis predominantly focuses on the “holes in a slab” type of 2D planar 
photonic crystal, shown in Fig 1.3 (a). 

 

 

 

(a) (b) 



 
 

4 

         
Figure 1.3. Two types of 2D photonic crystal. (a) SEM image of a photonic 
crystal with “holes in a slab” [7]. (b) SEM image of a photonic crystal with 
“rods in air” (http://www.electrumlaboratoriet.se/artikel/773/047004/en). 

Photonic crystals may reflect the propagation of photons, and whilst this is all well 
and good, one seeks to go beyond that characteristic towards more sophisticated and 
meaningful functionalities. To achieve this, the photonic crystal lattice must be locally 
modified in some way – i.e. the formation of a defect.  There are a variety of ways to 
introduce defects into photonic crystals, including changes of holes diameter, changes 
of holes position or removing holes completely from the lattice. 

1.2.1 Photonic crystal waveguides 

One of the requirements of a photonic system is for it to have a means of transporting 
its photons along a waveguide. This is necessary to integrate separate components of a 
system together and provide information to an end-user. The most common optical 
waveguide is the optical fibre, which by total internal reflection (TIR) allows highly 
efficient guidance through its central core. Waveguides can also be formed in 
photonic crystals via the introduction of a defect, generally exploiting the bandgap 
mechanism to provide confinement along the guide. Photonic crystal waveguides 
represent a potential technology to densely integrate photonic components, due to 
their tailorable dispersion and ability to strongly confine light on micron-scales. 

Typically, photonic crystal waveguides are formed by the removal of a row of holes 
in a planar photonic crystal (Fig. 1.4 (a)), as they were in this work. A line defect 
from removing one row of holes is termed a “W1” waveguide. Their removal, 
however, is not always necessary. Waveguides may also be formed by reducing the 
holes size along the direction of propagation (Fig 1.4 (b)). In both cases, the in-plane 
guidance is caused by the photonic bandgap from the adjacent photonic crystal 
sections. Propagation is thus allowed along the defect. Careful design of these defects 
has shown that light can be directionally controlled around very tight, micro-scale 
bends [8].  

(a) (b) 
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Figure 1.4. (a) W1 waveguide defect introduced into a planar photonic crystal 
by removing a row of holes [9]. (b) Waveguide defect formed by reducing the 
holes size in middle columns of the image [1].  

However, there is then the question of how the out-of-plane (i.e. out of page) 
confinement is achieved. In the case of 2D planar photonic crystals, this is achieved 
by suspending the host material as a membrane within an environment of lower 
refractive index. This provides a TIR confinement mechanism to maintain light along 
the guide. The thickness of suspended membranes is an important factor, typically 
around 150 – 300 nm, and together with the requirement to suspend them, their 
fabrication can be considerably complex.  

At this point, it is worth mentioning an additional noteworthy characteristic of 
photonic crystal waveguides: their ability to dramatically reduce the group velocity of 
light. The photons themselves are not slowed per se; rather, the photonic crystal 
causes them to experience an effectively increased path length. This can be 
problematic for the absorptive characteristics of photonic crystal waveguides 
(approximately 100dB/cm); however, it can be advantageous for increasing the 
interaction between photon and photonic crystal without requiring a proportional 
increase in guide length. Importantly, a particular type of photonic crystal waveguide 
– the photonic crystal cavity – can “hold” light in a mode that is localised in space for 
volumes comparable to the light’s wavelength.  

1.2.2 Photonic crystal cavities 

Optical cavities based on planar photonic crystals have earned much interest in recent 
years. This is due to their ability to strongly confine light at a resonant frequency for 
scales comparable to the light’s wavelength. This trait has promoted their use in 
numerous applications, offering the potential to carry out fundamental quantum 
electrodynamics experiments [10-12] as well as realise seamless all-optical 
functionalities such as channel-drop filters [13, 14], low-threshold lasers [15, 16], 
optical switches [17-24], optical buffers [25, 26] and optical sensors [27, 28].  

These applications for photonic crystal cavities mentioned above stem from their 
ability to enhance the interaction between light and matter. Indeed, this characteristic 
of photonic crystal cavities can be quantitatively measured in terms of both their 

(a) (b) 
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quality factor, Q, and modal volume, V. Figure 1.5 displays how photonic crystal 
cavities compare to other optical cavities (as of 2003). Significantly, cavity modal 
volumes in photonic crystals are much smaller than all other current optical cavity 
schemes. Whilst their Q-factors are comparably low in the presented table, the current 
world record of photonic crystal cavity Q-factor is approximately Q = 2.5×106 [29] 
and rapidly approaching the values achievable in toroids – without the corresponding 
increase in modal volume. 

 

 
Figure 1.5. Comparison of different optical cavities (2003) for their quality 
factors and modal volumes [30]. 

Quality factor is a dimensionless numerical value attached to a resonator’s ability to 
store energy, comparing the frequency for which a system oscillates to the rate at 
which the energy dissipates. A higher Q corresponds to a lower rate of energy 
dissipation relative to the oscillation frequency, implying that the oscillations “die out” 
more slowly. The average lifetime of a resonant photon in an optical cavity is 
proportional to the cavity’s Q. 

It is important for device design to make note that the different applications of 
photonic crystal cavities are interested in varied ratios for Q and V. In general terms 
(although not always the case), applications seek to maximise Q whilst minimising V. 
The following list outlines some example applications and their associated ratio of Q 
to V:  
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• Spontaneous emission control: Q/V 
 

o An optical cavity can enhance the rate of spontaneous emission from an 

embedded quantum dot by increasing its local density of modes. Q/V is 

proportional to the Purcell Factor. 
 

• Nonlinear threshold devices: V/Q2 
 

o The power threshold required to exploit nonlinear behaviour of a cavity’s 

material is given by V/Q. The additional factor of 1/Q relates to the spectral 

width of the resonance and therefore the amount of nonlinear refractive index 

shift required. 
 

• Optical sensing: Q/V 
 

o Increasing Q decreases the minimum detectable wavelength shift. Decreasing 

V reduces the amount of analyte necessary to generate a detectable signal. 
 

• Quantum electrodynamics experiments: Q/V1/2 [31] 
 

o For strong matter-photon coupling experiments, Q/V1/2 is proportion to g/κ, 

where g is the atom-field coupling strength and κ is the cavity field decay rate. 
 

The realisation of high Q’s is limited by parasitic loss mechanisms. These losses can 
be due to various factors that include poor total internal reflection confinement normal 
to the plane of the photonic crystal and abrupt perturbations in the cavity mode field. 
Practical fabrication of photonic crystals may introduce irregularities that contribute 
to these, thereby resulting in a reduction of Q. As a consequence, fabrication quality 
of photonic crystals is an imperative for achieving high Q-factors. 

1.2.3 Fabrication of planar photonic crystals 

Recent advances in fabrication techniques of nanostructures have enabled the 
realisation of two-dimensional photonic crystal structures. To engineer photonic 
crystal devices to suit telecommunications wavelengths (1.3 or 1.55 µm) and thereby 
integrate them into existing technology, a refractive index modulation period in the 
300-600 nm range is required. Exact values are dependent on the material refractive 
index, thickness and shape of the lattice unit cell. 

As two-dimensional photonic crystal structures typically guide light in the third 
dimension by total internal reflection, an appropriate cladding (most commonly air) is 
chosen with a lower refractive index than the membrane. To make such a device it is 
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necessary to accurately perforate the photonic crystal slab over tens or hundreds of 
periods, and additionally produce very smooth wall surfaces. Defect guiding is also 
highly sensitive to fabrication errors due to the possibility of coupling to out-of-plane 
radiative modes. This effect can be mitigated by designing the structures to guide 
modes below the light-line, meaning that their effective index is higher than the 
cladding index so there is no phase-matching to radiative modes. However, practical 
devices will always involve spatial Fourier components that radiate out of the plane, 
so fabrication quality is crucial [32]. 

Photonic crystal slabs must be symmetrical to maintain orthogonality between TE- 
and TM-like modes. Without this condition when the photonic crystal lattice has only 
a partial (i.e. TE- or TM-only) bandgap, cross-coupling can transfer power to a lossy 
mode and thereby compromise device performance [33]. Symmetry in practice 
requires both vertical sidewalls and identical upper and lower claddings. An air 
cladding both above and below the photonic crystal structure is favoured to meet the 
latter symmetry requirement as it also helps to keep the defect modes below the light-
line.  

The photonic crystal samples in this work were made from chalcogenide, silicon or 
InP host material. Currently, most 2D photonic crystal structures are fabricated using 
electron-beam or photolithography combined with dry etching. Indeed, the silicon and 
InP samples in this work were fabricated by electron-beam lithography. Fabrication 
capabilities in silicon are well developed due to CMOS technology and research. This 
is not the case for other high index materials (such as chalcogenide), where novel 
techniques are being explored. The chalcogenide samples in this work were fabricated 
by focused ion beam milling. 

The silicon photonic crystals in this work were fabricated in a manner similar to that 
of [34]. A wafer comprising of a 220 nm silicon layer on 2 µm of silica had a pattern 
exposed on top in an electron beam resist (ZEP520A) using an electron-beam writer 
(ZEISS GEMINI 1530/RAITH ELPHY) at 30keV. Pattern transfer into the silicon 
was formed by using reactive ion etching with CHF3 and SF6 gases. The silica 
beneath the photonic crystal was removed using HF acid while the rest of the pattern 
was protected with photoresist. 

The chalcogenide photonic crystals were formed in 300 nm thick suspended 
membranes on a silicon wafer, similar to [7]. Suspension of the chalcogenide film was 
obtained by floating it onto a water surface, which was then captured by a copper 
mesh transmission electron microscopy grid and dried. The pattern into the 
chalcogenide was formed by milling the structure with a focused ion beam (FIB) of 
Ga+ ions at an energy of 30keV. Redeposition of sputtered material is challenging for 
FIB milling of narrow and deep holes, which was alleviated in our samples by using a 
reactive gas. 
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The InP photonic crystals were fabricated with an InAs quantum dot ensemble 
embedded in the InP layer. The layers were grown by chemical beam epitaxy on 
semi-insulating (001) InP substrates with a Riber 32P deposition system. Electron 
beam lithography was used to write the pattern into a resist material. A series of 
etching processes translated the pattern into the InP. More details on the fabrication of 
the InP photonic crystals can be found here [35, 36]. The study of InP as the host 
material for photonic crystals is separate to the work contained in this thesis. As such, 
it is not discussed in further detail. 

1.3 Chip-based architectures 

The silicon microelectronic “chip” is ubiquitous in modern society. Much research 
has been undertaken to achieve this high technology and continues unabated. The 
advancement is driven by two major applications: switching technology for computers, 
and high-speed electronics for wireless telecommunications. Other compound 
semiconductor materials, such as GaAs, InP or III-V alloys, have played their part in 
the development of optoelectronic and purely photonic devices. Photonics, associated 
with signal generation, processing, transmission and detection, is formed by several 
principal components: lasers, waveguides, modulators, detectors and optical fibres.  

Photonic devices rely on the interaction between light and matter, which occurs at 
much faster rates than typical processes involving electron mobility. However, 
photonics has a key disadvantage to microelectronics in terms of deployment, due 
very simply to the fact that chip scale integration of optical components is still in its 
primitive developmental stages. Neither the standardisation of processes nor the 
packaging of optical components, both necessary for repeatability and mass 
production, are available. Nevertheless, roadmaps forecasting the evolution of 
photonics are being drawn [37-39], where it is a commonly held view that the 
industrial model of microelectronics, if applied to photonics, will strongly benefit its 
implementation. Figure 1.6 illustrates recent photonic progress in terms of a   
‘capacity × distance’ indicator. The “Optical Moore’s Law” represents a faster growth 
than the original Moore’s Law for integrated circuits. 
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Figure 1.6. Graph depicting the growth of the Capacity × Distance indicator, 
highlighting an “Optical Moore’s Law” corresponding to a factor of ten 
increase every four years [38]. 

On top of processing and communication speeds, optical-based devices are receiving 
much interest in terms of chemical analysis regimes. Optics provides a powerful 
scheme to monitor analytes due in part to the extensive array of existing photonic 
detection devices that are adaptive and precise. Employing these devices on a chip-
based architecture, one can feasibly develop for portability for rapid and point-of-care 
medical diagnostics, widespread threat detection and environmental monitoring. 

1.3.1 The photonic chip 

The evolution of photonics towards extreme miniaturisation strives to integrate many 
optical components onto the same chip – the “photonic chip” (Fig. 1.7). The goal of 
such a device is to improve the speeds of both communication and processing. For 
example, if one were to assume current trends of a 13% per year increase in user 
demand, as the Atlantic route has recently experienced, an alarming “World Wide 
Wait” scenario would occur in approximately 2015 [38]. An effective photonic chip 
may allow for greater capacity and thereby prevent this problem. It could ideally 
incorporate both processing and transmission/detection on the one single efficient all-
optical device. 

Already, integrated all-optical signal processing devices are receiving significant 
research on the computer chip level. The issue of electrical interconnects between 
processors for intra and inter chip communication is seeking improvement. The 
reasons for this are due to bandwidth and power consumption. Photonic interconnect 
solutions are increasingly sought after for the development of ‘server farms’ and 
multi-processor CPU applications. 
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Figure 1.7. Artist’s impression of a possible photonic chip. Many optical 
components are integrated on the one compact device, many of which are 
envisioned to be realised by photonic crystals. 

To realise a photonic chip device, novel tools must be developed that possess the 
necessary capabilities to form functional components to satisfy the demands for 
compactness. This poses a significant problem, as the degree of tunability or range of 
refractive index variation required to create such devices is drastically increased by 
the corresponding reduction in device dimensions. Photonic crystals have emerged as 
one of the pre-eminent contenders to overcome these issues due to their nano-sized 
parameters and the capability to control light on the wavelength scale. 

1.3.2 Lab-on-a-chip 

Lab-on-a-chip is a particular growing field of research that aims at developing a 
monolithic device which incorporates one or several laboratory functions on a single 
chip (such as the example of Fig. 1.8). Lab-on-a-chip devices deal with the handling 
of extremely small fluid volumes, down to less than picolitres. They are a subset of 
microelectromechanical systems (MEMS) and are often termed as “Micro Total 
Analysis Systems” (µTAS). If one defines the lab-on-a-chip to be a device that is 
capable of performing all its functions and detection on a device that fits in the palm 
of your hand (or smaller), then existing devices are generally still underdeveloped 
[40]. Such miniaturisation requires an increased integration of elements to carry out 
predetermined functions, specifically for improved detection. 
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Figure 1.8. Demonstration of an optofluidic lab-on-a-chip that combines 
various fluidic and photonic elements [41]. 

The performance of optical detectors is important for the lab-on-a-chip paradigm, 
especially considering the increasing demands placed on detectors as volumes 
decrease. Many current analytical instruments have optical detectors made up of 
components in various materials, mounted in free space on an optical bench or a 
similar system along an optical axis. Ideally the optical information would be 
extracted on-chip, reducing complexity and offering device flexibility. The two major 
problems to overcome for this are sensitivity and scalability. Use of photonic crystals 
for realising lab-on-a-chip applications are proving to be a promising approach [42], 
due to their ability to potentially address both these issues. On one hand photonic 
crystals can be tailored such that they are highly sensitive to subtle changes of 
refractive index, whilst on the other hand they control light on the wavelength scale; a 
property which is profoundly scalable. 

On top of this, a method to reconfigure a device would create additional versatility, 
allowing a scheme to optimise a device to suit a particular function, or to change the 
device configuration completely for an entirely separate function. The integration of 
photonics with microfluidics (termed optofluidics) is investigating this concept to 
develop a variety of components for adaptive chemical analysis. The advantage 
offered by the introduction of fluids to photonics is that fluids are inherently mobile. 
This provides a means to easily adjust local optical properties in a reconfigurable 
fashion without degrading the device after use or adjustment. In addition, the fluids 
(or fluid cocktails) could themselves possess additional functionality, as liquid 
crystals [43-46], or by containing active or nonlinear components. 

1.4 Nonlinear photonic crystals 

Numerous studies have been devoted to photonic crystals as controllers of light and 
the realisation of a variety of useful components. The operating principle is similar to 
how the periodicity of semiconductor atomic lattices may prevent or allow the flow of 
electrons. In the case of photonic crystals, the periodicity is formed by a dielectric 
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modulation. However, the analogy should not be pushed too far. Photons are not 
subject to Coulomb interactions, like their electron counterparts, and as such are not 
as easily controlled. Consequently, photonic crystals are not easily tunable. It is 
therefore natural to consider photonic crystals formed in nonlinear host media, which 
enables a method to create a functional component. 

Several interesting phenomena have been numerically and experimentally 
demonstrated in nonlinear photonic crystals: gap solitons [47, 48], band-edge 
bistability [49] and low-threshold lasers [50, 51]. The nonlinear properties of the 
materials allow for a dynamic change in the system to occur. In particular, intense 
research has embarked on the pursuit for all-optical switching [17-24] and buffering 
[25, 26] in photonic crystal cavities, both of which are launched on the trajectory 
towards photonic circuitry. 

1.4.1 All-optical switch 

One of the critical components necessary to develop a photonic chip its capability to 
process high data rate optical signals is the all-optical switch – often termed the 
“photonic transistor”, where light switches light. Early predictions for nonlinear 
compact photonic crystal cavity switching showed necessary power levels of only 
several mWs [17, 19]. More recent demonstrations have shown power levels of only 
µWs [25], with cavity volume absorption energies at several fJs. This contrasts with 
modern general-purpose electronic CPUs which consume power on the order of 10s 
of Watts. Developing all-optical logic gates by combination of photonic crystal 
cavities with highly nonlinear material opens the prospect of integrated photonic 
devices with design flexibility. This could be useful for novel functionalities, such as 
all-optical switching arrays in significantly reduced package sizes. 

Photonic crystal cavities containing “Kerr” nonlinear material, where the refractive 
index of the material is intensity dependant, show much promise. Kerr nonlinearity is 
given by: 

 ݊௘௙௙ ൌ ݊଴ ൅ ݊ଶ ൈ  (1.1) ,ܫ

where neff is the effective refractive index of the mode, n0 is the linear refractive index, 
n2 is the nonlinear Kerr coefficient (a third-order term) and I is the electric field 
intensity in the cavity. By increasing input power, the intensity inside the cavity 
increases and is magnified by its Q factor. This magnified intensity in turn affects the 
material’s refractive index, thereby shifting the resonance to different wavelengths. A 
transfer function describing such a system would observe an abrupt change – 
switching – between two states for a certain power threshold. This threshold can be 
minimised by using a highly nonlinear material (with a high n2 coefficient) and a 
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high-Q cavity to enhance the light-matter interaction. Such devices could form all-
optical logic gates or photonic transistors. 

The underlying principle to realise nonlinear all-optical switches is the concept of 
bistability [52, 53], illustrated in Fig. 1.9 (a) [20]. For systems that display optical 
bistability, the outgoing intensity is a strong nonlinear function of the input intensity, 
possibly even displaying a hysteresis loop. Photonic crystals offer a flexible method 
to achieve bistability due to their ability to provide controlled directionality and 
resonant feedback of an optical mode, as illustrated in Fig. 1.9 (b). 

 
 

            
Figure 1.9. (a) Input versus output power for a photonic crystal cavity switch, 
illustrating bistability. The red, green and blue curves correspond to different 
control output powers at different times of the switching process [20]. (b) 
Electric field for a photonic crystal bistable switch at 100% resonant linear 
transmission. The device illustrated consists of a resonant cavity in photonic 
crystal coupled to two waveguides serving as input and output ports [19].  

A suitable nonlinear material is required to create photonic crystal switch devices. 
The development of optoelectronic devices often uses III-V semiconductors, such as 
GaAs and InP, however the work of this thesis concentrates on two promising 
materials: silicon and chalcogenide. Where chalcogenide is a material receiving 
renewed interest due to its remarkable optical properties, such as its Kerr nonlinearity, 
silicon enjoys a well established and mature fabrication industry. In their different 
ways, both silicon and chalcogenide have much to offer to the frontiers of photonic 
crystal research. 

1.4.2 Silicon & Chalcogenide glass 

There are a variety of materials available to create nonlinear photonic crystals. These 
include III-V semiconductors such as InP and GaAs. The work contained in this thesis 
is primarily concerned with two materials: silicon (a semiconductor) and chalcogenide 
(an amorphous glass).  

Silicon has received a significant body of photonic research due in no small part to the 
presence of a fifty-year-old electronic industry that has matured fabrication processes 
(i.e. CMOS compatible). Functional photonic devices in silicon could be readily 

(a) (b) 
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mass-produced and seamlessly integrate with current technologies. Silicon also 
possesses several key characteristics that make it advantageously suitable for photonic 
applications. 

Silicon, widely used as the basis for electronic applications, has revealed itself as 
transparent at optical telecommunications wavelengths, clearing the way for its use in 
photonic applications. Silicon has a high refractive index of n ≈ 3.5 at 1.55 µm 
wavelengths, a crucial ingredient for realising ultra-high Q photonic crystal cavity 
devices [21]. In addition, it is a highly nonlinear material, up to 300 × that of silica, 
enabling it to be used as a nonlinear component – for example an all-optical switch.  

One major hurdle to overcome for silicon photonic applications is the presence of free 
charge carriers at the atomic level. The nonlinear refractive index modulation used for 
bistable operation typically occurs by carrier generation resulting from a process 
termed as two-photon absorption.  Free carriers become responsible for a lower bound 
on switching speeds of ~100’s ps, due to a finite time for the charges to diffuse [22, 
23]. A technique to overcome the issue of free carriers in silicon has been 
demonstrated, described as “carrier killing”, which doped the nanocavity with Ar+ 
ions and reduced switching times to ~70 ps [18]. Comparatively, modern silicon 
electronic switching speeds clock at approximately 3 GHz (~100’s ps), whilst  III-V 
semiconductor based photonic crystal cavity devices have been demonstrated to 
switch at ~10 ps [24].  

Chalcogenide glasses have generated much interest toward the goal of a photonic chip 
due to a swathe of attractive properties [54]. Chalcogenide glasses are an amorphous 
transparent material in the infrared containing the chalcogen elements S, Se or Te, 
combined with network forming elements such as As, Si and Ge. The refractive index 
of chalcogenide is high (for a glass), typically between 2.4 and 3.0, allowing photonic 
crystals to be formed. Absorption losses are low over a wide wavelength range (near- 
to mid-infrared). They possess a relatively high third-order optical nonlinearity (100 – 
1000 times that of silica), and low two-photon absorption, which together translate 
into very low switching power requirements. The nonlinear figure of merit          
(FOM = n2 / αλ, in which α is the two-photon absorption coefficient) is used to 
classify different nonlinear materials, and for some chalcogenides (such as As2S3) it is 
higher than 12 at telecommunications wavelengths (compared to less than 1 for 
silicon) [55]. Perhaps most importantly, the pure Kerr-like nonlinearity of 
chalcogenide glass offers the potential for near instantaneous response times at          
< 100 fs. The only limitation of these devices would then be the cavity Q factor, since 
a greater photon lifetime in the cavity would limit response times. Nevertheless, 
chalcogenide glass photonic crystal cavities could potentially form the basis of ultra-
fast and low threshold power all-optical switches.  
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Figure 1.10. Periodic table highlighting the region containing chalcogens. 

Chalcogenide glass photonic crystals may be processed by conventional lithographic 
techniques. Compared to silicon, fabrication technologies for chalcogenide glasses 
have had much less time to mature. As such, they suffer increased roughness, poorer 
sidewall profiles and higher optical losses. Nevertheless, high quality chalcogenide 
glass photonic crystals are being processed with significant quality improvements and 
are given an optimistic outlook [56]. 

Single-photon-sources and the Purcell Effect 

Single quantum dots – semiconductors whose excitons are confined in all three spatial 
dimensions – have generated much research interest in recent years due to their atom-
like emission. Not only are they capable of emitting triggered single photons [57-60], 
but they may be embedded within micro-scale cavities [30] that can channel the single 
photon emission. Such a combined quantum dot / cavity system has the potential to 
realise efficient single photon sources at telecommunications wavelengths – in other 
words, a key enabler for quantum key distribution (quantum cryptography) and 
quantum information processing devices [31, 61]. Such devices would depend highly 
upon the efficiency to which the photons can be extracted, which can be addressed in 
two ways: (i) redirection of the quantum dot emission into a single cavity mode and 
(ii) collection of the photons from the cavity mode to the outside world. 

The first point may be addressed by the fact that cavities can funnel a large fraction of 
the quantum dot emission into an available cavity mode. This emission may then be 
enhanced by the cavity through the Purcell Factor [10], which is given by 
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where Fp is the Purcell Factor, Q is the observed quality factor of the cavity mode, λ 
is the wavelength of the cavity mode, n is the effective index of the cavity mode and V 
is the cavity modal volume. One important point to note is that the Purcell Factor is 
proportional to Q/V. The Purcell Factor represents the maximum possible 
enhancement of the quantum dot spontaneous emission rate into the cavity mode and 
requires precise spectral alignment between the quantum dot and cavity resonance. 

The second point, relating to coupling from the cavity to the outside world, has two 
main approaches. The first is collecting part of the intrinsic optical losses of the mode 
from the cavity using collection optics. The second is introducing an additional 
channel of escape for the photons. This second approach is investigated in [62], which 
on top of providing a means to extract light from a cavity mode, enables a subtle way 
to both probe and tune the cavities without requiring anything to be done to the 
already processed sample. 

1.5 Characterising photonic crystal structures 

Characterisation of photonic crystal structures is by no means a trivial task. The 
micron-scale size of photonic crystal structures represents an immediate difficulty, 
especially so when considering the nano-scale dimensions of components within the 
photonic crystal. The most common medium of optical signal transport – the optical 
fibre – guides its light through a core that is 8 µm in diameter. Coupling light from a 
standard optical fibre into a sub-micron device is therefore inherently inefficient. This 
is not only a result of the size mismatch, but also the optical mode profile mismatch 
and the differences in effective refractive index. 

1.5.1 Coupling techniques 

Various techniques have been employed in recent years to overcome the difficulty of 
coupling to micron-scale photonic structures. One method is via the use of a tapered 
input waveguide [63, 64]. An extended wire from the photonic crystal has its profile 
tailored to both efficiently collect light from a standard optical fibre and then insert it 
to within the photonic crystal waveguide (Fig. 1.11). Another method employs 
perpendicular coupling to either a 1D or 2D photonic crystal by using a grating 
coupler [65]. 
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Figure 1.11. Tapered input waveguide to improve insertion efficiency into the 
photonic crystal [64]. 

However, both techniques mentioned above have their drawbacks, either by the 
necessity of creating additional input structures at the fabrication stage – the tapered 
input waveguide – or a lack of coupling efficiency – the grating coupler. A method to 
probe photonic crystal structures that overcomes both these difficulties would 
therefore be highly advantageous.  

1.5.2 Evanescent coupling 

This thesis utilises evanescent coupling to insert light within micron-scale photonic 
structures. A silica optical fibre has its dimensions reduced by approximately two 
orders of magnitude, creating a “nanowire” that allows for significant near-field 
interaction to occur between the reduced-size fibre and the target device. There are 
numerous groups interested in nanowire evanescent coupling [1, 9, 66-73]. Knight et 
al [66] describes the first realisation of evanescent coupling to a microcavity, which 
was a relatively large mode volume glass microsphere cavity. Srinivasan et al [67, 68] 
represents the first realisation of tapered fibre coupling to a wavelength-scale 
semiconductor cavity, which in these cases were a photonic crystal defect cavity. The 
differences between [66] and [67, 68] lie in the microcavity material (glass versus 
silicon), geometry (microsphere versus photonic crystal) and mode volume (hundreds 
of cubic wavelengths versus less than one cubic wavelength). Hwang et al [69] 
demonstrates evanescent coupling from a nanowire utilised to pump an InP photonic 
crystal microlaser and to collect its emission. Kuang et al [70] theoretically discusses 
coupling to a photonic crystal waveguide. Barclay et al [1] claims the first 
experimental demonstration of taper-photonic crystal waveguide coupling, with [71] 
and [72] presenting detailed experimental results on the topic. Coupling to photonic 
crystal waveguides using the evanescent coupling method has reached efficiencies of 
over 90% by Barclay et al [73]; in more recent work in this thesis, an insertion 
efficiency of 98% is obtained (albeit 6dB of broadband loss) [9].  
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1.5.3 Fabricating nanowires 

Fabricating the coupling nanowires involves a process that adiabatically reduces the 
outer diameter of a silica single mode fibre (SMF-28) from 125 µm down to ~1 µm 
(Fig. 1.12). This is achieved by using a “flame brushing” technique that locally heats 
a section of the fibre with a butane flame. Whilst the fibre is heated, stages that hold 
the fibre move outward simultaneously, stretching the silica down to its reduced 
dimensions. The taper length and profile is tailored by the appropriate choice of flame 
brushing profile and both elongation rate and elongation length. More details of this 
are given in Chapter 3. 

 

 
Figure 1.12. (a) Image of the taper station used for work in this thesis. (b) 
Schematic depicting the tapering process. Two clamps on motorised stages 
hold and stretch an optical fibre whilst it is heated by a butane flame. In 
operation, the taper station of (a) is covered by a housing to minimise air flow. 

The reduced dimensions of the tapered nanowire cause the fibre to act as the core with 
the surrounding air becoming the cladding. The air cladding mode of the tapered fibre 
then exhibits an evanescent tail which expands out of the silica nanowire waveguide 
and into the surrounding air. Due to the fact that light transport is ensured by the 
evanescent wave guiding, the ratio of light in the evanescent field becomes high 
enough to respond to the surrounding environment. This allows tapered nanowires to 
not only be useful for communicating with micro-scale cavities, but also for 
miniaturised optical sensors with high sensitivity [74]. 

 

(a) 

(b) 
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1.5.4 Utilising nanowires 

How the nanowires are used is depicted in Fig. 1.13 (a). A glass microscope slide with 
two bolts attached is stationed above the photonic crystal sample. The nanowire is 
then fixed to the bolts by epoxy resin and allowed to suspend over the device. Select 
evanescent coupling to photonic crystal waveguides is achieved by inducing a bow 
shape into the nanowire to prevent unwanted coupling to the wafer substrate. 
Coupling to a much smaller photonic crystal cavity requires an even more localised 
coupling. This is achieved by inducing a micro-loop into the nanowire, as shown in 
Fig. 1.13 (b). 

 

             
 

Figure 1.13. (a) Schematic of the evanescent coupling setup. The nanowire is 
connected to a glass slide via epoxy resin to pre-attached fixed bolts.  (b) A 
tight micro-loop is induced into the nanowires to localise coupling to micron-
scale photonic crystal cavities. HeNe (633 nm) laser light is sent through the 
loop for visibility. 

The tightly curved micro-loops may not only selectively couple to photonic crystal 
cavities but also allow for interesting information to be obtained from the structures. 
The highly curved tapers result in an expanded distribution of taper modes in k-space. 
K-space, also known as reciprocal space, has units of inverse length and is the 
variable axis of a dispersion relation. Dispersion relations are a common method to 
characterise photonic crystals, which portray the frequency dependence (dispersion) 
of electromagnetic propagation into their structure. Increasing the distribution of a 
taper mode in k-space allows a greater frequency range of photonic crystal modes 
within which they may be coupled. Observing a large spectral profile of photonic 
crystal modes provides information on the dispersive behaviour of the photonic 
crystal structure, as depicted in Fig. 1.14. This suggests evanescent coupling via 
tightly curved micro-loops is a promising method for non-invasive characterisation of 
a photonic crystal device. More details of the above characterisation are given in the 
following chapter. 
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Figure 1.14. A schematic of the setup used to characterise a closed photonic 
crystal waveguide. A highly curved nanowire is brought into close proximity 
with the photonic crystal structure and the transmission spectrum through the 
fibre is monitored. Dips in the spectrum appear where light is coupled from 
the taper into the waveguide. 

1.6 Optofluidics 

Optofluidics is an emerging field of research that integrates photonics with fluids [75, 
76]. Fluids possess characteristics that cannot be obtained in solids, and by exploring 
these one can design novel devices. Examples of exploitable fluid characteristics 
include: the ability to change the optical property of the fluid medium within a device 
by replacing one fluid with another; the optically smooth interface between two 
immiscible fluids; and the ability of flowing streams of miscible fluids to create 
gradients in optical properties by diffusion. Whilst the majority of optical devices and 
components are currently formed by solid materials, there are cases in which it has 
been advantageous to use fluids. Liquid crystal displays [77], liquid mirrors in 
telescopes [78] and electrowetting lenses [79] are prime examples. 

Recent methodologies that have been advanced implement optofluidic devices with 
microfluidic technologies. This allows accurate manipulation of fluids on very small 
spatial and volume scales, as shown in Fig. 1.15. Integration and reconfigurability are 
two key advantages for the optofluidic paradigm, since microfluidics has opened up 
the possibility to incorporate multiple fluidic tasks onto a single chip. Photonic 
components such as the light source, lenses, waveguides and sensors, which were 
previously off-chip, can now be realised on the one compact device by building the 
optics from the microfluidic toolbox: the optofluidic lab-on-a-chip.  
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Figure 1.15. (a) Image of a chip-based device with the integration of complex 
microfluidic components [80]. (b) Generalised layer construction of an 
optofluidic device. There are typically 3 layers: (i) the microfluidic controls; 
(ii) the microfluidic channels; and (iii) the optical structure, for example 
photonic crystals (http://www.optofluidics.caltech.edu/optofluidics/index.html). 

1.6.1 Microfluidics for optofluidics 

Microfluidics is a field of research with important applications in biotechnology, 
chemical synthesis and analytical chemistry. There is an extensive body of literature 
on how the physical properties of fluids on small scales can be used for device 
functionality [81-83]. Many of these interesting effects can be harnessed to control 
optical properties, and technological advances in fabrication processes have made it 
possible to make miniaturised devices capable of integrating complex networks of 
channels, valves, pumps and other forms of microfluid manipulation. Due to the large 
range of index modulation achievable through fluid manipulation, which can be 
induced locally by using microfluidic circuitry, there is a benefit to using fluids. 
Strong potential is also apparent to develop accurate sensors that can detect subtle 
changes of fluid index for sub-µL volumes. Indeed, a large market is anticipated for 
portable microfluidic sensor devices in lab-on-a-chip formats for environmental 
monitoring, medical diagnostics and chemical-weapon detection [76]. 

Significantly more attention has been given to fluid behaviour on lab-on-a-chip 
architectures than to the detection aspects [42]. This is because many detection 
principles are hard to implement and do not scale favourably down to corresponding 
sizes. As a result, fluorescence detection has been a method of choice for miniaturised 
systems, despite its requirement of a cumbersome labelling process. More recently, 
label-free optical resonators have become the preferred approach. These include ring 
resonators [84, 85] and photonic crystals [86-89]. Nunes et al [88] recently 
investigates a one-dimensional photonic crystal resonator integrated within a 
microfluidic system, as shown in Fig. 1.16. Here, pillars are used rather than holes in 
order to allow liquid to be pumped into and through the cavity. 

(a) (b) 
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Figure 1.16. Scanning-electron-microscope image of an on-column 1D 
photonic crystal refractive index chemical sensor [88]. 

Erickson et al [89] combines soft lithography-based nanofluidics with silicon 
nanophotonics, creating a nanophotonic layer, a nanofluidic delivery structure, and a 
microfluidic control engine, as shown in Fig. 1.17. This scheme allows selective 
targeting of a liquid to a row of holes in the photonic crystal, thereby enabling high 
Δn/n (~0.1) refractive index tuning. Variations of such a technique could enable 
selective introduction of optical nonlinearities or delivery of single molecules into 
resonant cavities for detection. A foundation for the development of dynamic 
reconfiguration of photonic circuits is established in this work. 

 

 

Figure 1.17. Nanofluidically tunable photonic structures [89]. (a) Exploded 
view of the opto-fluidic assembly showing the lower photonic layer, central 
fluidic layer and control top layer. (b) Overview of device operation. The 
microfluidic control engine mixes and dispenses liquid plugs to the 
nanofluidic array. The nanofluidic structure serves to deliver liquids directly 
into a targeted row of holes in the photonic crystal, enabling localised, high 
Δn/n refractive index tuning. (c) Photograph of an assembled chip next to a 
“dime”. (d) Optical image showing overlay of nanochannels with photonic 
crystal.  

(a) (b) 

(c) (d) 
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1.7 Reconfigurable photonic crystal components 

A growing body of scientific literature is investigating the possibility of 
reconfigurable photonic crystals [36, 43-46, 89-106]. The pursuit is to increase device 
functionality by adjusting the photonic crystal properties after fabrication, either to 
relax fabrication tolerances or allow for optimisation of existing components. On one 
hand there is the possibility to tune photonic crystals via modulation of the host 
material refractive index, such as by thermo-optic approaches [90], post-process 
chemical treatments [36], mechanical deformation [91], mechanical perturbation by 
atomic force microscopy tip [92], or, as explored in this thesis, exploiting the 
material’s photosensitivity [93]. Similar approaches may also include introducing 
additional features during the fabrication stage such as fluids in nanochannels (as 
mentioned in the previous section) [89, 94, 95] and depositing a thin photosensitive 
chalcogenide strip over the photonic crystal [96]. On the other hand there have been 
demonstrations showing post-trimming and tuning of photonic crystals by infiltrating 
the pores with organic materials, such as liquid crystal [43-46] and polymer [97-101], 
and inorganic materials, such as fluorescent dye [102] and, pertinent to this thesis, 
microscopy oil [103]. Theoretical studies have suggested that selective infiltration of 
only a few holes in the photonic crystal can provide an alternative approach for 
realising compact photonic integrated components, for example single-mode 
waveguides, broadband low-reflection bends, crossings and splitters [104, 105], and 
high Q cavities [106].  

1.7.1 Photosensitive photonic crystals in chalcogenide glass 

One post-process tuning technique to modify the optical properties of a planar 
photonic crystal device is by the utilisation of photosensitivity within chalcogenide 
glass [56, 93, 107]. Prior to [93], chalcogenide photosensitivity was successfully 
demonstrated for the creation of directly written waveguides [108-110], strong Bragg 
gratings [111], and for the post-tuning of optical components such as distributed 
feedback lasers [112] and quantum cascade lasers [113].  

The photosensitivity of the chalcogenide glass is known to stem from structural 
rearrangements induced by the absorption of light at frequencies near the absorption 
band-edge of the material [114]. As a result of the structural rearrangements, changes 
in the properties of the glass can occur, such as its refractive index and density. The 
magnitude and sign of the photoinduced changes are often highly dependent on the 
chemical composition of the glass [115] and on the processing history of the sample 
[116]. These changes may be reversible or irreversible, with irreversible changes 
resulting from what is termed “photo annealing” of thin films deposited in a non-
equilibrium state [117], and reversible changes resulting from structural 
rearrangement into a quasi-stable state from exposure [116, 117]. 
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Figure 1.18. Two-dimensional representation of the random-network model 
appropriate to GeSe2 chalcogenide for the system in virgin state (pre-exposed) 
and equilibrium state (post-exposed) [115]. 

Photonic crystal components may be post-processed in chalcogenide glass photonic 
crystals by exposing the samples to light at frequencies at which the material absorbs. 
The material’s photosensitivity will thereby result in a change in refractive index – as 
was demonstrated in [93] in chalcogenide glass photonic crystal waveguides. It is 
possible to translate this to photonic crystal cavities, either by tuning their properties 
or even potentially forming a cavity. 

The capability to tune or create a photonic crystal cavity resonance is vital to support 
numerous applications. For example, the double-heterostructure cavity [21], which 
shows remarkable promise for achieving ultra-high Q resonances, relies on precise 
engineering of the lattice constants along a line defect. Local adjustment of the lattice 
parameters allows for light confinement due to a change in effective refractive index 
of the defect mode within that region. Similarly, it is feasible to consider forming a 
double heterostructure cavity by exposing a local region of a photosensitive material 
photonic crystal waveguide. Modelling suggests that a Q-factor of ~30,000 is 
achievable in chalcogenide glass by inducing a refractive index shift of 0.01 [118]. A 
general design rule has been proposed [119] where the form of the cavity electric-
field distribution should slowly vary, most ideally by a Gaussian function to suppress 
out-of-slab photon leakage. Such a profile would be readily possible by laser-spot 
exposure to the photosensitive material, potentially extending the ~30,000 Q-factor 
prediction dramatically. 

An example where the photosensitivity of chalcogenide glass photonic crystals has 
served practically is in the demonstration of tuning a cavity resonance for quantum 
electrodynamics (QED) experiments [96]. Consider single photon source applications, 
where single quantum dots housed within photonic crystal cavities are to be enhanced 
via the Purcell Factor of the cavity mode. It is critical that the spectral resonances of 
the quantum dot and the photonic crystal cavity are precisely aligned, however that is 
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most often not the case. The photosensitive post-processed technique allows for 
tuning the cavity to match the resonances, suggesting the potential use for exploiting 
this effect in QED experiments and other fields of research.  

1.7.2 Microfluidic photonic crystal cavities 

The introduction of micro- or nano-scale fluids to photonic crystals is a promising 
way to reconfigure the system. Similar in method to the photosensitive post-
processing of photonic crystals, the introduction of a fluid results in a change of 
effective index for optical modes that overlap it. As a result, one obvious difference 
between the two techniques is the perturbation of the lattice in the microfluidic regime 
occurs where the fluid has penetrated the pores, rather than an induced change in the 
host material. An immediate advantage is that due to the mobility offered by fluids, 
one can potentially achieve highly versatile and reconfigurable devices that would not 
degrade after use. 

 

     
Figure 1.19. Rewritable photonic crystal circuits using fluids to infiltrate the 
lattice holes “pixel by pixel” [102]. 

The rewritable / reconfigurability aspect offered by the fusion of microfluidics with 
photonic devices – optofluidics – has already received a surge of research interest [89, 
94, 120-125] in recent years. In addition to this, there is also the potential to develop 
highly sensitive integrated sensors [27, 41, 126]. In both regards, it has been shown 
that photonic crystals in general [94, 120, 126] and photonic crystal cavities in 
particular [27, 28, 86] can be advantageously exploited within optofluidic 
architectures. The advantage of combining photonic crystal cavities with optofluidics 
is the potential for high light-liquid interaction to occur when infiltrating the air holes 
that typically surround and / or form the defect. 
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Figure 1.20. Schematic of a photonic crystal double heterostructure formed in 
a W1 waveguide in the Γ-K direction by air-holes infiltration. Refractive index 
distribution in the plane of the structures is considered. 

Double heterostructure defects can be induced within the photonic crystal lattice by 
infiltrating a select, local region of holes with a fluid, as shown above in Fig. 1.20. 
The infiltrated region gives rise to optical modes that have a greater effective index 
than the surrounding, uninfiltrated photonic crystal optical modes. Similar to forming 
double heterostructures in photonic crystals via exploiting a photosensitivity 
processes, this microfluidic approach immediately overcomes one of the major 
drawbacks from geometry-based double heterostructures, where fabrication precision 
is critical. This postprocessing technique has the potential to realise arbitrarily-defined 
photonic crystal components, offering unprecedented flexibility in terms of device 
geometry and fluids involved, as illustrated below in Fig. 21.  

 

 
Figure 1.21. Illustration of a sophisticated microfluidic photonic crystal device. 

The marriage of photonic crystals with optofluidics also opens the door toward 
sensing schemes. The fluid infiltration of photonic crystals forms a defect, 
circumventing the difficult requirement of aligning the fluid to a sensing element. 
Since the holes of the photonic crystal are approximately 0.1fL in volume, incredibly 
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small volumes of analyte are therefore necessary to make a meaningful component. 
Furthermore, these cavities exhibit high Q-factors despite the presence of a fluid; it 
has been shown that this microfluidic regime may potentially reach values up to        
Q = 1×106 [106]. In summary, the microfluidic photonic crystal cavity regime is not 
only highly suitable to developing reconfigurable integrated photonic crystal 
components, but is also primed for accurate, small-volume-analyte sensing devices. 
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Chapter 2 
 
Theory 

 

The following section aims to provide the mathematical and physical theory required 
to make sense of the work entailed in this thesis.  

First, photonic crystals are explained in terms of the Maxwell’s equations, which are 
then cast as a Hermitian eigenvalue problem. The periodic nature of crystal lattices is 
described in unique terms which greatly reduce the necessary calculations. The 
inherent scalability of photonic crystals is described mathematically. The concept of 
bandstructure is introduced, providing a way to make sense of interesting photonic 
crystal structures and also how to optimise them. Photonic crystal cavities, 
waveguides and double heterostructures are explained. 

Next, evanescent coupling is detailed. The equations describing the coupling and 
between modes of adjacent waveguides and their associated behaviour are given. A 
mathematical description of mode distribution in k-space for a curved tapered optical 
fibre is presented, following with how this promotes the ability to characterise 
dispersion and propagation loss in a closed photonic crystal waveguide. 

Finally, basic descriptions of the qualitative principles underlying microfluidic 
behaviour are given. In this final section of the chapter, surface tension, contact angle, 
surface wetting behaviour and capillary action are covered. 

2.1 Photonic crystals 

Photonic crystals are structures containing a periodic variation of dielectric constant 
(refractive index), for which the modulation is typically on the scale of nanometres. 
The periodicity may be in one, two or three dimensions, as depicted below in Fig. 2.1.  
The work of this thesis is primarily concerned with two-dimensional type photonic 
crystals.  
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Figure 2.1. Generic examples of one-, two-, and three-dimensional photonic 
crystals. The different colours represent a periodic modulation of dielectric 
constant (refractive index) [127]. 

Photonic crystals offer a method to control the propagation of electromagnetic waves. 
It is therefore a logical step to study their operating principle by looking to Maxwell’s 
equations[127]. 

2.1.1 Maxwell’s equations 

Macroscopic electromagnetism, including the propagation of light in photonic crystals, 
is governed by the following four Maxwell’s equations:  

  
׏ · ۰ ൌ 0 

 

׏ ൈ ۳ ൅
∂۰
ݐ∂ ൌ 0 

 
׏ · ۲ ൌ  ߩ

 

׏ ൈ ۶ െ
∂۲
ݐ∂ ൌ ۸, 

(2.1) 

 

where E and H are the electric and magnetic fields, D and B are the displacement and 
magnetic induction fields, and ρ and J are the free charge and current densities.   

For purposes of this study, a restriction is imposed for macroscopic propagation 
within a mixed dielectric medium; a composite of homogeneous dielectric material 
that is a function of position vector r and does not vary with time. It is assumed that 
there are no free charges or currents, setting ρ = 0 and J = 0. One then seeks to relate 
D to E and B to H. Generally, the components Di of the displacement field D are 
related to the components Ei of the electric field E via the power series: 

௜ܦ 

଴ߝ
ൌ ෍ ௜௝ߝ

௝

௝ܧ ൅ ෍ ߯௜௝௞
௝,௞
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It is reasonable to make several additional assumptions for electromagnetic waves in 
photonic crystals. The first is that the field strengths are small enough so that only the 
linear regime is considered and χijk terms can be neglected. Second, there is no 
frequency dependence on the dielectric constant (i.e. no material dispersion). Third, 
only lossless transparent materials are considered, so the dielectric function is real and 
positive. 

With the above assumptions, D(r) = ε0ε(r)E(r) and B(r) = µ0µ(r)H(r) are obtained. 
Most dielectric materials of interest have a relative magnetic permeability µ(r) very 
close to unity, so by argument of simplicity, B = µ0H is used. Maxwell’s equations 
become: 

  
׏ · ۶ሺܚ, ሻݐ ൌ 0 

 

׏ ൈ ۳ሺܚ, ሻݐ ൅ ଴ߤ
∂۶ሺܚ, ሻݐ

ݐ∂ ൌ 0 
 

׏ · ሾߝሺܚሻ۳ሺܚ, ሻሿݐ ൌ 0 
 

׏ ൈ ۶ሺܚ, ሻݐ െ ሻܚሺߝ଴ߝ
߲۳ሺܚ, ሻݐ

ݐ߲ ൌ 0. 
 

(2.3) 

Generally, E and H are complex functions in both time and space, yet the time and 
spatial dependencies may be separated by expanding the fields into a set of harmonic 
modes. The harmonic modes can be interpreted as the spatial field patterns (mode 
profiles) that vary with time. By taking the real part of the complex-valued fields, the 
physical fields of the harmonic modes can be obtained from 

  
۶ሺܚ, ሻݐ ൌ ۶ሺܚሻ݁ି௜ఠ௧ 

 
۳ሺܚ, ሻݐ ൌ ۳ሺܚሻ݁ି௜ఠ௧. 

 

(2.4) 

The equations governing the mode profiles at a set frequency can be found by 
inserting the above equations into (2.3).  The divergence equations become 

׏  · ۶ሺܚሻ ൌ 0 

׏ · ሾߝሺܚሻ۳ሺܚሻሿ ൌ 0, 
(2.5) 

which imply the absence of point sources or sinks for displacement or magnetic fields. 
The curl equations relate E(r) to H(r): 
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׏  ൈ ۳ሺܚሻ െ ሻܚ଴۶ሺߤ߱݅ ൌ 0 

׏ ൈ ۶ሺܚሻ ൅ ሻܚሻ۳ሺܚሺߝ଴ߝ߱݅ ൌ 0. 
(2.6) 

The equations of (2.6) can be decoupled, leading to the time-independent vector 
Helmholtz equation 

  

׏ ൈ ቆ
1

ሻܚሺߝ ׏ ൈ ۶ሺܚሻቇ ൌ ቀ
߱
ܿ ቁ

ଶ
۶ሺܚሻ. 

 

(2.7) 

In photonic crystal literature, this is often described as the “master equation” and is 
ultimately what gets calculated by the relevant numerical software, such as the plane 
wave expansion method. Equation (2.7) allows the modes H(r) and their 
corresponding frequencies to be derived for a given structure ε(r). E(r) can be 
recovered from H(r) by 

 ۳ሺܚሻ ൌ
݅

ሻܚሺߝ଴ߝ߱ ׏ ൈ ۶ሺܚሻ. (2.8) 

The reason why H(r) is solved first rather than E(r) is one of mathematical 
convenience and is detailed here [127].  

2.1.2 Electromagnetism as an eigenvalue problem 

Solving equation (2.7) for the modes H(r) of a given system leads to an eigenvalue 
problem. The eigenvectors H(r) are the spatial patterns of the harmonic modes. It is 
common in literature to identify the left hand side of (2.7) by the operator Θ෡  as: 

 Θ෡ ൌ ׏ ൈ
1

ሻܚሺߝ ׏ ൈ, (2.9) 

where Θ෡  is Hermitian. It is important to note that Θ෡  is a linear operator, meaning that 
any linear combination of solutions is itself a solution. For example, given a certain 
mode profile, another legitimate mode profile can be constructed with the same 
frequency by doubling field strength everywhere. As such, any two fields that differ 
by a multiplicative factor are considered the same mode. 

The Hermiticity of Θ෡  forces any two harmonic modes H1(r) and H2(r) with different 
frequencies ω1 and ω2 to have an inner product of zero. Consider two normalised 
modes, H1(r) and H2(r), with frequencies ω1 and ω2: 
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 ߱ଵ
ଶሺ۶ଶ, ۶ଵሻ ൌ ܿଶ൫۶ଶ,Θ෡۶ଵ൯ ൌ ܿଶ൫Θ෡۶ଶ, ۶ଵ൯ ൌ ߱ଶ

ଶሺ۶ଶ, ۶ଵሻ 

֜ ሺ߱ଵ
ଶ െ ߱ଶ

ଶሻሺ۶ଶ, ۶ଵሻ ൌ 0. 
(2.10) 

For ω1 ≠ ω2, then (H1, H2) = 0 and H1 and H2 are described as orthogonal modes. If 
two modes have equal frequencies ω1 = ω2, then we say they are degenerate. It is 
important to note that the eigenvectors for degenerate states are always linearly 
independent and by a Schmidt orthogonalization procedure may still be made 
orthogonal to each other. Degenerate modes imply that different field patterns occur 
with equivalent frequencies. For example, this is possible in a dielectric configuration 
that is invariant under a 120° rotation, where modes that differ by a corresponding 
120° rotation can be expected to have the same frequency. 

2.1.3 Periodic geometry and reciprocal space 

Photonic crystals are structures composed of a periodic refractive index distribution. It 
is therefore necessary to apply the Maxwell’s equations into a periodic space. The 
periodicity can be expressed by a function f(r) in terms of a lattice, where                
f(r) = f(r + R) and R is a lattice vector. Fixed basis vectors a1, a2, a3 are taken such 
that for all points R in a three-dimensional lattice, R = la1 + ma2 + na3 for some 
integers l, m and n. The basis vectors are not unique, as indicated in Fig. 2.2. 

 

 

Figure 2.2. Two-dimensional square lattice. The black arrows in (a) and (b) 
indicate different choices of basis.  

The connection between a continuous function f(R) and a discrete lattice is provided 
by a unit cell. A unit cell is a region of space which can be translated by every lattice 
vector and maps the complete function. A special case, the primitive unit cell, is any 
unit cell that occupies the least possible volume, shown in Fig. 2.3. 

 

 

(a) (b) 
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Figure 2.3. Schematic showing two different primitive unit cells in a two-
dimensional square lattice. 

For every lattice there is an associated reciprocal lattice. The vectors of the reciprocal 
lattice are defined by: 

૚܊  ൌ ߨ2
૛܉ ൈ ૜܉

૚܉ · ૛܉ ൈ ૜܉

૛܊ ൌ ߨ2
૜܉ ൈ ૚܉

૛܉ · ૜܉ ൈ ૚܉
 

૜܊ ൌ ߨ2
૚܉ ൈ ૛܉

૜܉ · ૚܉ ൈ ૛܉
 

(2.11) 

Where a1, a2, a3 are the lattice vectors and b1, b2, b3 are the reciprocal lattice vectors. 
The lattice vectors and the reciprocal lattice vectors are related by the equation  

௝܊௜܉  ൌ  ௜௝, (2.12)ߜߨ2

where δij = 1 if i = j and 0 otherwise. As a lattice vector is denoted by R, a reciprocal 
lattice vector is denoted by G. As the lattice vectors have dimensions of length, the 
reciprocal lattice vectors have dimensions of inverse length, spanning reciprocal space.  
Figure 2.4 illustrates a conversion from real space to reciprocal space for a triangular 
lattice. 

 

 

 

(a) (b) 
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Figure 2.4. A triangular lattice in both (a) real space and (b) reciprocal space. 
In this case the reciprocal lattice is a rotated version of the original. 

2.1.4 First Brillouin Zone 

Studies of electromagnetic modes in conventional photonic structures such as optical 
fibres or other types of waveguides often seek to find the dispersion relation k = k(ω), 
which gives the wavevector k for a particular mode with frequency ω. The 
wavevector determines the phase velocity of the mode in the equation 

 
۳ሺܚ, ሻݐ ൌ ۳ሺݔ, ሻexpݕ ቈെ݅߱ ቆݐ െ

ݖ
௣ݒ

ቇ቉, (2.13) 

which describes a mode E(x, y) propagating along the z axis with phase velocity        
vp = ω/k. The wavevector is closely related to wavelength by the wavenumber:           
k = 2π/λ.  

For the purposes of this work, the dispersion relation is inverted to obtain ω = ω(k). 
This may not be an intuitive approach given that the frequency of an optical source is 
easily controlled rather than its wavevector. However, the approach here allows the 
possibility to find different solutions for every value of the wavevector. The optical 
fibre provides a good way of conveying what happens in this case: as k increases in 
the direction of propagation, a greater portion of the mode profile E(x, y) is bound to 
the core. Increasing k without limit therefore causes the effective index of the mode to 
asymptotically approach the core’s refractive index. For sufficiently large k, the 
system may support multiple modes for which there are several solutions ωn for each 
value k. This type of behaviour is shown in Fig. 2.5.  

y

x

(a) 

a1 = a(x+y/√3)/2  

a2 = a(x-y/√3)/2  

(b) 
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Figure 2.5. Illustration of dispersion curves for modes of a uniform waveguide. 
The blue lines correspond to modes localised to the waveguide, labelled as 
band numbers starting with n = 0 being the lowest frequency mode. The 
shaded region is a continuum of states that extend into the guide and the 
surrounding medium. The red line is the light line. 

For periodic systems such as photonic crystals, the dispersion curves are different. It 
is no longer the case that distinct solutions are found for every value of k. Figure 2.6 
shows a portion of the dispersion relation – the bandstructure – for a set of modes for 
a one-dimensional lattice of period a. As the wavevector k varies, the mode 
frequencies repeat with period 2π/a. 

 

 

 

Figure 2.6. Dispersion curves (band structure) for TM/TE modes of a one-
dimensional lattice. More bands appear at higher frequencies without limit. 

Taking the concept further, any two wavevectors that differ by a reciprocal lattice 
vector are essentially equivalent, written in equation form as: 
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 ߱௜ሺܓሻ ൌ ߱௜ሺܓ ൅ ۵ሻ. (2.14) 

This result simplifies the computational task of calculating modes tremendously, since 
to find all the modes of the photonic crystal, one only has to solve the problem in the 
neighbourhood of the origin of wavevector or reciprocal space. This neighbourhood is 
defined as the part of reciprocal space consisting of all points closer to the origin than 
to any other reciprocal lattice vector. It is termed the First Brillouin Zone. 

Figure 2.7 displays the First Brillouin Zone for some commonly encountered photonic 
crystal types. The points labelled with letters in these diagrams correspond to points 
of high symmetry within the First Brillouin Zone. 

 

                   

Figure 2.7. First Brillouin Zones for several photonic crystals. (a) 2D square 
lattice, (b) 2D hexagonal lattice and (c) 3D cubic lattice. 

2.1.5 Bloch’s Theorem 

The modes of a photonic crystal must be solutions to Maxwell’s equations. However, 
their periodic aspect places a restriction on the possible form of the solutions. In 
particular, the modes must satisfy the appropriate translation symmetry. If the 
refractive index distribution is identical in every unit cell, a mode must be unchanged 
if it is shifted in space by any lattice vector R. At most, the solution may change by a 
constant phase factor.  

Consider a system that is translationally invariant with a translation operator ෠ܶ d. 
When operating on a function f(r) with ෠ܶ d, the argument is shifted by d and        
෠ܶdε(r) = ε(r – d) = ε(r). A mode with the form of eik·r is then an eigenfunction of any 
translation operator over r: 

 ෠ܶௗ݁ܚ௜ܚ·ܓ ൌ ݁௜ܓ൉ሺିܚௗሻ ൌ ൫݁ି௜ܓௗ൯݁௜ܚ·ܓ. (2.15) 

This is a result known as Bloch’s Theorem and applies to any wave-like phenomenon 
in a periodic medium. For equation (2.13) the corresponding eigenvalue is e-ikd. 

(a) (b) (c) 
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Expanding on this, the converse can be shown where any eigenfunction of ෠ܶd for all  
d = dr must be proportional to eik·r for some k. The modes of the system can be 
chosen to be eigenfunctions of all the ෠ܶd’s, so they should have an r dependence on 
the form eik·r. The modes can then be classified by the particular values for k.  

With this in mind, the magnetic field can be expressed as 

 ۶ሺܚሻ ൌ ݁௜ܚ·ܓ  ሻ, (2.16)ܚሺܓܝ

where uk(r) = uk(r + R) for all lattice vectors R. Note that due to Bloch’s Theorem, 
only the wavevectors k inside the First Brillouin Zone need to be considered. For 
example, consider a wavevector k′ outside the First Brillouin Zone. Then there is a 
reciprocal lattice vector G such that k′ = k + G and k is within the First Brillouin 
Zone. Therefore 

 ۶ሺܚሻ ൌ ݁௜ܚ·′ܓ  ሻܚሺ′ܓܝ

ൌ ሾ݁௜ܚ·ܓ ݁௜۵·ܚሿ ܓܝ′ሺܚሻ 

ൌ ݁௜݁ൣܚ·ܓ௜۵·ܓܝ ܚ′ሺܚሻ൧ 

ൌ ݁௜ܚ·ܓ  ,ሻܚሺ′ܓܝ

(2.17) 

where we have used the fact that eiG·r is a function with the periodicity of the lattice. 
Implicitly, any solution for a wavevector outside the First Brillouin Zone has a 
corresponding solution inside the First Brillouin Zone. Armed with the above 
information, modes take a form like 

ሻܚሺܓ۶  ൌ ۶଴݁௜(2.18) ,ܚ·ܓ 

where H0 is any constant vector. These are plane waves and are solutions (in this case, 
the homogenous problem where ε = 1) of the master equation (2.7) with eigenvalues 
(ω/c)2 = |k|2/ε. The result is the dispersion relation ω = c|k|/√ε. Classifying the plane 
wave by its wavevector k specifies how the mode is transformed by a translation 
operation. In fact there is an infinite number of solutions k for every ω; however, 
some are more interesting than others, as depicted in Fig. 2.5 and Fig. 2.6. 

2.1.6 Scale invariance of Maxwell’s equations 

As mentioned in the previous chapter, scalability is an important issue for device 
miniaturisation, particularly sensing schemes. Photonic crystals are highly suited to 
these types of application, as they are considered to be completely scalable. This is 
due to the fact that electromagnetism in dielectric media has no fundamental length 
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scale other than the assumption that the system is macroscopic. The master equation 
(2.7) can be described as scale invariant, where contraction or expansion of all 
distances results in the same master equation.  

Suppose one is interested in the harmonic modes for a configuration of dielectric ε′(r) 
that is a compressed or expanded version of ε(r): ε′(r) = ε(r/σ) for some scale 
parameter σ. Using a change of variables in (2.7) where r′ = σr and ∇′ = ∇/σ, we get: 

 
′׏ߪ ൈ ൭

1
ሻߪ/′ܚሺߝ σ׏′ ൈ ۶ሺߪ/′ܚሻ൱ ൌ ቀ

߱
ܿ ቁ

ଶ
۶ሺߪ/′ܚሻ. (2.19) 

Here, ε(r′/σ) is the same as ε′(r′). It follows that 

 
′׏ ൈ ቆ

1
ሻ′ܚሺ′ߝ ′׏ ൈ ۶ሺߪ/′ܚሻቇ ൌ ቀ

߱
ቁߪܿ

ଶ
۶ሺߪ/′ܚሻ. (2.20) 

Equation (2.20) is the master equation again with mode profile H′(r′) = H′(r′/σ) and 
frequency ω′ = ω/σ. This means the new mode profile and its frequency can be 
obtained by rescaling the original mode and frequency. The solutions of one length 
scale determine the solutions for all other length scales. 

2.1.7 Polarisation 

For transverse electromagnetic waves, polarisation describes the orientation of the 
electric field oscillations. It is a critical consideration for photonic crystals, as it 
affects how the propagating wave interacts with the lattice structure. An electric field 
pointing into the crystal plane is described as TE polarisation; out of plane orientation 
is TE polarisation. 

A note about real systems here: for two dimensional cases one can easily define the 
two distinct polarisations: TE and TM. However, in the reality of three dimensions 
where a slab has finite thickness, this no longer holds completely true. At the point 
where symmetry is maintained for the centre of the slab, z = 0, the modes are purely 
TE or TM polarised. However, deviations from this point will break the symmetry. By 
continuity of the fields, small changes of location away from the symmetry point will 
be mostly TE-like or TM-like, as long as the waveguide thickness is less than the 
wavelength. This is highlighted in Fig. 2.8. 
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Figure 2.8. Schematic depiction of the electric field lines (E) for a thin 
dielectric structure, where z = 0 is the symmetry plane [127]. Deviations from 
the symmetry plane change the electric field orientation. As a result, modes 
are described as TE-like or TM-like. 

2.1.8 Bandstructures 

As stated previously, the master equation results in an infinite number of solutions ωn 
for each value of k, which are labelled by band number, n, in order of increasing 
frequency. Varying k over all possible values produces a set of solutions of ω that 
constitutes a band. The bandstructure of the crystal is the collection of all these bands. 
The values of k inside the First Brillouin Zone are the only non-redundant values 
necessary, so from these the complete bandstructure can be obtained. 

Bandstructure problems form curves in one dimension, surfaces in two dimensions 
and hyper surfaces in three dimensions. Figure 2.9 shows some band surfaces for a 
two dimensional cubic lattice of rods in air for the two different polarisation cases, 
TM and TE. The horizontal plane of the figure is the two dimensional reciprocal 
lattice and the vertical axis represents the mode frequency. Each sheet is a single band. 

 

 

Figure 2.9. Frequency surfaces for a 2D cubic lattice. (a) TM polarisation, (b) 
TE polarisation. (Obtained from RSoft BandSOLVE). 

The bandstructures shown in Fig. 2.9 introduce the concept of band gap. If one 
considers two adjacent bands, say m and m + 1, then in most cases there will be one or 
more points in k-space where the bands touch. For example, Fig. 2.9 (a) shows 

(a) (b) 
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touching of the second and third bands at their corners, together with the first and 
second bands overlapping where minima of the second sheet are lower than maxima 
of the first. However, certain index distributions can cause frequency ranges between 
two bands for which there are no solutions at all. This range is known as a band gap 
and it is impossible for electromagnetic radiation frequencies within that range to 
propagate in the crystal. Figure 2.9 (b) exhibits a large band gap between the first and 
second bands. 

It is fortunate to note that most common applications of locating and optimising band 
gaps can be done by using a small subset of points in the First Brillouin Zone. Group 
theory, which will not be dealt with here, can be used to show that the extremity 
points of the bands must occur at points of high symmetry. If a band gap is found at 
the symmetry points, one can be certain that the band gap persists at all points within 
the First Brillouin Zone.  

A band diagram can be constructed by identifying the points of symmetry of the First 
Brillouin Zone and connecting them by straight lines. This connection is known as the 
k-path. Figure 2.7 (a) and (b) illustrate these. Bandstructures can then be calculated 
and plotted as a single graph, as shown in Fig. 2.10 which correspond to the examples 
in Fig. 2.9. As expected from the complete surface plots, the bands in the TM band 
are connected whilst there is a band gap in the TE case. 

 

        
 

Figure 2.10. TM and TE band diagrams for the cubic lattice of rods in air, 
corresponding to Fig. 2.9 examples.  

An important concept to explain here is the light line, which was introduced in        
Fig. 2.5. The light line essentially describes the crossover point between modes bound 
to the waveguide (beneath the light line) and the continuum of radiative modes (above 
the light line). For a given waveguide, the modes that are not confined must extend 
out to infinity. Far away, the modes will resemble free-space plane waves with a 
superposition given by 

Wavevector (k) Wavevector (k) 

(a) (b) 
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߱ ൌ |ܓ|ܿ ൌ ܿට൫݇||

ଶ ൅ ݇ୄ
ଶ൯, (21) 

for k|| and k٣, which are some parallel and perpendicular real wavevector components 
with respect to the structure. For a given value of k||, there will be modes with every 
possible frequency greater than ck٣ since k٣ can take any value. As a result, the region 
above the light line ω = ck|| has a continuous spectrum of states. The region above the 
light line ω > ck|| is termed the light cone.  

The region below the light line contains the index-guided modes where the ε is larger. 
This lowers the frequencies of the modes relative to their corresponding values in free 
space. The only solutions in air are those with an imaginary perpendicular component: 

 ݇ୄ ൌ േ݅ට݇||
ଶ െ ߱ଶ/ܿଶ. (2.22) 

This corresponds to fields that decay evanescently away from the guide, meaning that 
the modes confine to the higher index region. For a given k|| there are a set of discrete 
frequencies – bands – due to their being localised in one direction. Increasing k|| 
results in more and more guided bands, eventually approaching the ray-optics limit of 
total internal reflected rays with a continuum of maintained angles  θ > θc. 

2.1.9 The physics of band gaps 

Harmonic modes in dielectric medium can be quite complicated, although there are 
some simple ways to understand their qualitative features. In general, a mode tends to 
concentrate its electric field energy in high-ε regions and remains orthogonal to modes 
of lower frequency. This can be described by the variational theorem [127], in which 
the lowest frequency mode corresponds to the field pattern that minimises the 
electromagnetic energy functional:  

 
௙ܷሺ۶ሻ ൌ

ሺ׏ ൈ ۳, ׏ ൈ ۳ሻ
ሺ۳, ሻ۳ሻܚሺߝ  

ൌ
׬ ݀ଷ׏|ܚ ൈ ۳ሺܚሻ|ଶ

׬ ݀ଷ  .ሻ|ଶܚሻ|۳ሺܚሺߝܚ

(2.23) 

One can observe here that a way to minimise Uf is to maximise the electric field in 
high-ε regions (denominator) and minimising the amount of spatial oscillations 
(numerator) – of course, whilst remaining orthogonal to lower frequency modes. This 
latter point is important, since it distinguishes all modes from each other and results in 
the higher frequency modes concentrating less of their electric field in the high-ε 
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region. Consequently, there are differences in electric field profiles of the modes, 
which cause the existence of the band gap.  

Corresponding to the fact that low frequency modes concentrate comparably more of 
their energy in high-ε regions, it is conventional to refer to the band above a gap as the 
air band, and the band below as the dielectric band. This is analogous to the electronic 
band structure of semiconductors where the conduction and valance bands are 
adjacent above and below the fundamental gap.  

 

 

Figure 2.11. A photonic bandstructure for a multilayer film of periodically 
modulating ε (1D photonic crystal). The band above the photonic band gap is 
referred to as the air band, and below it is the dielectric band [127].  

A band gap will appear in every system possessing a periodic ε modulation where 
ε1/ε2 ≠ 1. The extent of the gap could be characterised by its frequency width, Δω. 
However, considering the scale invariance of Maxwell’s equations, expanding or 
contracting the crystal by a factor σ will simply scale the gap width as Δω/σ. A more 
appropriate characterisation, independent of the scale of the crystal, is given by the 
gap-midgap ratio. If ωm is the centre frequency of the gap, the gap-midgap ratio is 
given by Δω/ωm. For similar reasons, it is common to plot band diagrams in terms of 
the dimensionless units ωa/2πc and ka/2π. 

If one considers two materials in a multilayer film with dielectric constants ε and ε + 
Δε, and thickness a – d and d, then if either the dielectric contrast is weak (Δε/ε << 1) 
or the thickness d/a is small, the gap-midgap ratio between the first two bands is 
approximately  

 ∆߱
߱୫

ൎ
ߝ∆
ߝ ·

sinሺ݀ߨ/ܽሻ
ߨ . (2.24) 



 
 

44 

Consequently, this allows one to arrive at a quantified estimation for the extent of a 
band gap. 

2.1.9 Photonic crystal cavities 

Two dimensional dielectric functions with band gaps can prevent electromagnetic 
propagation in the plane of the crystal. Typically within the band gaps, no modes exist. 
However, one can modify a single lattice site and create a localised mode – or set of 
closely spaced modes – that are inside the band gap. For photonic crystals, the 
modification of one or several lattice points forms a defect.  

There are several options to locally perturb a photonic crystal lattice in a two-
dimensional geometry. This includes removing one or several lattice points, changing 
their size, or adjusting their location. These perturbations ruin the translational 
symmetry of the lattice, introducing an increased density of states within the band gap. 
Defect-induced modes extend evanescently since they are prohibited into the rest of 
the crystal. Providing that the defect has the proper dimensions to support a mode 
within the band gap, the strong reflection of the photonic crystal surrounding the 
defect forms a cavity. 

A defect mode can be described as having its own variation in ε(r), εdefect, for the 
mode within the photonic crystal structure. For example, increasing εdefect decreases 
the defect mode frequency, which pulls a band down from the upper edge of the band 
gap to a range within the gap. This grants an engineering degree of freedom to design 
photonic crystal cavity devices. A positive Δε can be achieved for example by adding 
dielectric material to holes of a slab photonic crystal profile, as shown below in       
Fig. 2.12.  

 

        

Figure 2.12. (a) Electric field profile of a cavity mode formed by a missing 
hole and modified adjacent holes [62]. (b) E-field profile of a cavity mode 
formed by three missing holes [119].  

The question of in-plane light confinement is essentially answered by the photonic 
band gap. What about the direction perpendicular to the plane of periodicity? To 
understand this, one considers propagation components kz > 0 (z being out-of-the-

(a) (b)   
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plane) and develops an out-of-plane band structure, shown in Fig. 2.13. Many of the 
qualitative features of this band structure are common to all two dimensional crystals.  

 

 

Figure 2.13. Out-of-plane bandstructure of a triangular lattice of air columns. 
Bands starting at Γ, ω( Γ, kz ), are plotted with blue lines, and K, ω( K, kz ) are 
plotted with green. The red light line separates the oscillatory modes in the air 
regions ( ω ≥ ckz ) from those that are evanescent in the air regions ( ω ≤ ckz ). 
The inset shows the frequency dependence of the lowest band as kz varies 
[127]. 

There is no band gap to prevent propagation in the out-of-plane direction. This is a 
consequence of homogeneity of the crystal in that direction. There is also no 
distinction between modes which are TE or TM, as the mirror symmetry is broken for 
kz ≠ 0.  

The inset of Fig. 2.13 shows the behaviour of the lowest band for increasing kz. For 
the case when kz = 0, the lowest band spans a broad range of frequencies. As kz is 
increased, the lowest band flattens and the range of allowed frequencies for a given kz 
decreases to zero – i.e. the bandwidth of available frequencies vanishes. This can be 
explained by the light modes being trapped in neighbouring high-ε regions due to 
index guiding. Little overlap occurs, decoupling the modes and therefore reducing the 
bandwidth. This is also displayed by the bands in Fig. 12, where there is large 
dispersion for ω > ckz, and small dispersion for ω << ckz. 

There are two important parameters that describe a photonic crystal cavity: effective 
modal volume and quality factor. The effective modal volume gives the peak electric 
field strength in the cavity by the formula [128]: 

 
௘ܸ௙௙ ൌ
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Veff in photonic crystal cavities is typically defined in terms of some coefficient x 
times wavelength over effective refractive index: (x(λ/n)3). This takes into account the 
scale-invariance of Maxwell’s equations and also the stronger confinement caused by 
higher refractive indices. 

The quality factor characterises the ability for a cavity to store energy. A mode in a 
cavity has finite lifetime, acting with a complex frequency ωc = ω0 – iγ/2 in which the 
imaginary part is associated with exponential decay. If the field decays e-γt/2, then the 
energy within the cavity decays as e-γt. The loss rate γ is not used conventionally due 
to the scale-invariance of the Maxwell’s equations: instead, the dimensionless 
quantity, quality factor, is used, given by Q = ω0/γ.  

The quality factor can be interpreted in three ways. Firstly, 1/Q is a dimensionless 
decay rate as: 

 1
ܳ ൌ

ܲ
߱଴(2.26) ,ߝ 

where P is the dissipated power, U is the electromagnetic energy localised in the 
cavity and ω0 is the frequency of the resonance. Secondly, Q is a dimensionless 
lifetime, referring to the number of optical periods that elapse before the energy 
decays by a factor of e-2π. Thirdly, 1/Q is the fractional bandwidth of the resonance. 
This is given by Q = ω0/Δω, where Δω is the full-width half-maximum of the Fourier 
transformed time-varying field in the cavity. 

Where a resonance has more than one decay mechanism, it is common to characterise 
each of these mechanisms with its own Q, as mentioned in the introductory chapter.  
These mechanisms may include in-plane losses, out-of-plane losses, surface 
roughness, crystal irregularities and coupling to escape waveguides. The more a given 
loss mechanism degrades the overall net Q of the cavity, the lower its own Q is. 
Introducing the various loss mechanisms is done by adding its inverse to the 
following equation: 

 1
ܳ௡௘௧

ൌ
1

ܳ଴
൅

1
ܳ௙௜௥௦௧ ௗ௘௖௔௬ ௠௘௖௛௔௡௜௦௠

൅
1

ܳ௦௘௖௢௡ௗ ௗ௘௖௔௬ ௠௘௖௛௔௡௜௦௠
൅ … (2.27) 

where Q0 is the intrinsic Q of the cavity. Electrical engineers might observe a 
similarity with the above equation to a system of parallel capacitances. Q0 is 
considered an important value, as attempts can be made to minimise other loss 
mechanisms. In addition to Q0, the convention used in reference [62] considers two 
other decay channels: Qfibre, which describes coupling of energy back into the input 
fibre, and Qparasitic, which accounts for any significant perturbation of the mode field 
inside the cavity. An example of this is broken photonic crystal symmetry, which may 
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cause the transfer of energy from a TE-like mode to a less well confined TM-like 
mode.  

If one assumes a system where there is only an intrinsic Q0 and one additional decay 
mechanism associated with the input scheme, for example Qfibre (all other decay 
mechanisms approach infinity), then from coupled mode theory in time [129], Qnet 
can be described as 

 ܳ௡௘௧ ൌ √ܶ ൈ ܳ଴, (2.28) 

where T is the fraction of transmitted power that does not couple into the cavity. A T 
of 1 would indicate no power coupling into the cavity; 0.75 would be 25% of 
transmitted power coupling to the cavity. It is satisfactory to use T for values down to 
0.5. The implication of (2.28) is that a cavity which is strongly coupled to will have a 
reduced net Q. 

2.1.10 Photonic crystal waveguides 

As mentioned previously, local defects can be used in photonic crystals to trap light. 
In addition, linear defects can also be induced, which guide light in a photonic crystal 
from one location to another. The principle is similar to the cavity geometry, where a 
change in ε(r) can allow for a mode to exist within the photonic band gap. In this case, 
however, a mode may propagate along the defect, as illustrated in Fig. 2.14. Such a 
mode is known as a waveguide mode. 

 

 

Figure 2.14. The electric field pattern – waveguide mode – associated with a 
linear defect within a square lattice [127].  

A system with a linear defect has one direction within the crystal plane for which the 
discrete translational symmetry is preserved. In this case it is the direction of the 
guide. Various techniques have been employed to achieve an appropriate guiding 
defect, for example removing one or several rows of lattice points, and by changing 
the parameters of the holes along a row. An important distinction between cavities 
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and waveguides is that a point defect (cavity) mode is localised whenever its 
frequency is in the photonic band gap, whereas for a linear defect (waveguide) mode, 
its behaviour depends on both its frequency and its wavevector. Therefore a cavity 
mode considers values of (ω) within a bandgap, and a guided mode considers values 
of (k, ω) within a bandgap. 

The band diagram of Fig. 2.15 shows a guided band lying within the photonic band 
gap. The gap makes the mode evanescent into the photonic crystal, providing in-plane 
confinement to the defect. However, the mode is allowed to propagate along the 
defect, resulting in a guide. Outside the gap, the dark-red region of Fig. 2.15, the 
modes extend within the photonic crystal and also cover a continuous range of 
frequencies. The increased ε associated with the removed holes creates an index-
guiding effect in all directions, preventing out-of-plane radiation for wavevector 
components below the light line. 

 

 

Figure 2.15. The projected band structure of the TE-like states for a “W1” 
defect along the x direction in the hole slab (inset) [127]. Dark-red shaded 
regions indicate modes that extend into the crystal. Guided modes are 
introduced in the gap (red bands in pink shaded region).  

A crucial aspect of two-dimensional photonic crystal waveguides is therefore its slab 
thickness. Consider the extreme cases: a slab that is too thin weakly guides (if at all), 
whilst a slab that is too thick resembles an infinite two-dimensional system and 
supports higher order modes. Approximately half a wavelength in thickness can be 
expected for ideal guiding – thick enough for the lowest frequency (fundamental) 
mode to be well confined, yet thin enough to “cut-off” higher order modes from 
fitting in the slab. The problem then becomes determining whether the wavelength 
should be considered as that for either the air or the dielectric. It turns out that the 
effective ε is mode-dependant by the spatial average of the ε profile weighted by the 
field profile. The effective vertical wavelengths of TE-like modes are determined 
mostly by high ε material, whilst for TM-like modes it is mostly the low ε material.  
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Another important consideration for propagating modes in a photonic crystal is their 
group velocity. The group velocity is the energy transport velocity when the medium 
is assumed to be lossless, possesses small material dispersion and the wavevector is 
real. If one considers the Bloch state Hk(r)e-iωt is a plane wave ei(k·r - ωt) multiplied by a 
periodic function uk(r), then it propagates through the crystal and all the scattering 
events are coherent as a result of uk(r). The group velocity is a function of both the 
band index n and the wavevector k: 
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 ො. (2.29)ܢ

This information is essentially available from the bandstructure: the group velocity of 
a mode is the gradient of its band. 

2.1.11 Photonic crystal double heterostructures 

As mentioned previously, the Q-factor and modal volume, V, of photonic crystal 
cavities are important parameters for many of their applications. Typically, the ratio 
Q/V is sought to be maximised. A design rule to increase the Q-factor without much 
change to modal volume has been proposed for two-dimensional planar geometries 
[119], describing an avoidance of abrupt cavity edges. The form of the cavity mode 
electric-field distribution should slowly vary, ideally as a Gaussian profile, to 
minimise photon leakage out of the slab. However, the exact structure to achieve this 
has not been established. One successful method, which has realised experimental Q-
factors of over 2×106, is the double heterostructure, as illustrated in Fig. 2.16. 

The double heterostructure is formed by combining two different photonic crystal 
waveguide sections. Figure 2.16 (a) shows a waveguide formed in a photonic crystal 
by removal of its holes along one direction. Figure 2.16 (b) shows the corresponding 
calculated bandstructure, which displays a waveguide mode within the photonic 
bandgap. Figure 2.16 (c) shows the introduction of a section within the photonic 
crystal waveguide that contains adjusted parameters; the ensemble of which is termed 
the double heterostructure. The adjustment is achieved by elongating the periodicity 
of the holes along the direction of the waveguide, increasing the effective refractive 
index for that section. Figure 2.16 (d) shows the corresponding band diagrams over 
real space, revealing the formation of a mode gap. The mode gap prohibits 
propagation in the direction along the waveguide. This is combined with the high 
index slab that provides total internal reflection for out-of-plane confinement and the 
photonic bandgap for in-plane confinement. A mode excited in the adjusted section is 
therefore confined in all three dimensions, resulting in a spatially localised cavity. 
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Figure 2.16. Illustration of the operating principle behind the double 
heterostructure [21]. (a) Planar photonic crystal waveguide. (b) Calculated 
bandstructure for (a). (c) Photonic crystal double heterostructure, constructed 
by connecting the waveguide structures I and II. The deformed triangular 
lattice in II has its periodicity elongated parallel to the waveguide direction. 
(d) Schematic of the band diagram along the waveguide direction. A mode 
existing in the waveguide of II will not propagate into section I due to the 
formation of a mode gap. Instead, the mode of II will decay evanescently 
outside that region. 

A crucial point to the formation of a double heterostructure cavity is the increase in 
effective refractive index. Typically, this is achieved by local alterations in the 
periodic geometry of the photonic crystal lattice. One alternative approach to 
increasing the effective refractive index of a local region is via the infiltration of 
select holes within the photonic crystal structure by a liquid [106]. In this case, the air 
holes are replaced with a material of refractive index n > 1, as illustrated in Fig. 2.17. 
Increasing the index of the holes increases the effective index of a mode within that 
region, consequently lowering its dispersion curve. The difference between infiltrated 
and uninfiltrated bands is the mode gap, as illustrated in Fig. 2.17 (b). The mode gap 
is most often measured at the edge of the First Brillouin Zone. 
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Figure 2.17. (a) Double heterostructure cavity with lattice period a and hole 
radius R. The orange indicates a region of fluid-filled holes within the 
otherwise photonic crystal waveguide structure. (b) Dispersion relation of 
wavevectors in the direction of the line defect for regular (blue triangles) and 
fluid-filled (red circles) photonic crystal waveguides (nfluid = 1.51). The 
difference between the curves is labelled mode gap. Dashed line is the light 
line. The green line represents a fibre mode, which will be discussed more in 
the next section. 

It has been shown that the size of the mode gap in this regime is comparable to the 
mode gap of heterostructures formed by different lattice constants photonic crystals 
[106]. This indicates that the heterostructures formed by air-holes infiltration are 
indeed capable of the mode gap operation. There are some limiting factors, however. 
The mode gap must remain within the photonic band gap of both the infiltrated and 
uninfiltrated cases to prevent it from radiating into the crystal. Therefore it is 
important that the lowered dispersion curve due to infiltration does not overlap the 
lower edge of the photonic band gap for the uninfiltrated case. This is achievable if 
there is a sufficient frequency range between the waveguide mode and the edge of the 
photonic band gap for the case before infiltration. 

Previous numerical studies have been undertaken to investigate the Q-factor and 
mode volume characteristics of air-holes infiltrated photonic crystal double-
heterostructures [106]. These parameters are important for numerous photonic crystal 
applications, as discussed in Chapter 1. Using a finite difference time domain method, 
a relevant subset of the behaviours of Q-factor and modal volume have been obtained 
and shown in Fig. 2.18 (a). These are plotted as a function of the refractive index 
infiltrated into the air holes. 
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Figure 2.18. (a) Quality factor Q (rectangles) and modal volume V (crosses) as 
a function of the refractive index of the infiltrated holes. (b) Schematic of the 
refractive index profile for an air-holes infiltrated photonic crystal double 
heterostructure [106]. 

Figure 2.18 (a) shows that as the refractive index of the holes increases, the Q-factor 
increases initially. This is attributed to the increased average refractive index 
providing better out of plane confinement and therefore smaller out of plane losses. 
However, an optimum value is reached before the Q decreases. The decrease is 
believed to occur because the dispersion curves for the higher refractive indices shift 
lower whilst the lower band edge for the uninfiltrated photonic crystal section remains 
fixed (Fig. 2.17 (b)). The resulting minimised separation causes an increased loss to 
the adjacent photonic crystal. However, it is still worth noting that there is a large 
range of refractive indices where the quality factor remains of order 105. 

The results of modal volumes for these resonances, expressed in (λ/n)3 with n = 3.4 
(silicon), are also plotted in Fig. 2.18. As the refractive index of the central holes 
increases, the modal volume decreases. This is expected behaviour as the resonant 
mode becomes better confined with the increased difference between the two 
heterostructures.   
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2.2 Evanescent coupling 

Evanescent coupling is a process by which an electromagnetic wave is transmitted 
from one waveguide to another by means of an evanescent field. Evanescent coupling 
may occur when two waveguides are close to one another such that the evanescent 
field generated by one element does not decay too significantly before reaching the 
other. Providing the receiving waveguide can support modes of the appropriate 
frequency, the evanescent field will “connect” the waveguides and coupling between 
the elements may occur. 

Evanescent coupling is essentially identical to the near field interaction involved in 
electromagnetic field theory. Evanescent waves are not considered in the far field 
regime, where the components of the wave eventually reach the ratio of the 
impedance of free space and propagate radiatively. As such, evanescent coupling 
occurs in close proximity to the waveguide media and is therefore associated with 
matter. Depending on the impedance of the radiating source, the corresponding near 
field evanescent wave is predominantly electric (capacitive) or predominantly 
magnetic (inductive). Evanescent coupling is directly analogous to the coupling 
between two plates of a capacitor or the primary and secondary coils of a transformer. 
Mathematically, the process is similar to quantum tunnelling, however using 
electromagnetic waves rather than quantum-mechanical wave functions. 

2.2.1 Coupled mode theory 

There are usually two conditions necessary for energy exchange between guided 
modes. The first is an overlap of the energy profiles between the two modes, which is 
essentially achieved by the extension of the evanescent fields into the adjacent 
waveguides. The second is a synchronisation between the two modes, where their 
propagation constants are equal, β1 = β2, and they are phase matched. 

That being said, if none of the modes of the two waveguides have identical 
propagation constants, energy exchange is still possible if, for example, a diffraction 
grating is placed on one or both waveguides. The presence of the grating may even 
allow modes to couple with propagation constants travelling in opposite directions,   
β1 > 0, β2 < 0. 

A general coupled mode theory treats modes in separate waveguides as being 
mutually orthogonal in the absence of the coupling process. As such, a mathematical 
description of the coupled modes considers each mode to be otherwise isolated and 
ideal, requiring a perturbation of some kind to cause the coupling. The perturbation 
leading to mode coupling may be regarded as the presence of one guide in the vicinity 
of the other. 

The interaction of the waves in a pair of coupled waveguides can be described by the 
following coupled wave equations [130, 131]: 
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(2.30) 

In these equations, z is the direction along the waveguides; a1 and a2 are the 
amplitudes of the two modes which interact via the coupling coefficient, κ; and β1 and 
β2 are their propagation constants. The parameter p assumes the value p = 1 for co-
propagation coupling and p = -1 for contra-directional coupling. 

2.2.2 Optical fibre to photonic crystal waveguide coupling 

Evanescent coupling from an adiabatically tapered optical fibre to a photonic crystal 
waveguide is undertaken extensively during the scope of this thesis. This regime 
allows efficient interfacing between fibre optics and planar photonic crystal devices. 
One of its distinct advantages is that it circumvents the intrinsic spatial and refractive 
index mismatch of fibre to photonic crystal waveguide end-fire coupling. The regime 
experiences coherent interaction over the length of the coupling region between 
phase-matched modes of each waveguide, allowing for almost unity power transfer 
between the guides.  

In particular, the coupling between the fundamental mode of the tapered fibre and the 
modes of a W1 photonic crystal waveguide is explored and utilised throughout the 
thesis. Relative to the taper mode, the photonic crystal waveguide modes have a 
negative group velocity, resulting in contra-directional coupling as depicted in the 
schematic of Fig. 2.19. In addition, the ends of the waveguides are abruptly 
terminated, causing Fresnel reflections at the end facets, indicated by r1 and r2. As 
such, the systems studied in this thesis are similar to that of [73]. 

 

 

Figure 2.19. Illustration of the contra-directional coupling process and the 
feedback within the photonic crystal waveguide (PCWG) caused by the 
reflectivities r1,2 of the waveguide terminations [73]. The coupling region 
extends along the z-axis, with z = 0 corresponding to the input, and z = L to the 
output. 
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In the absence of reflections caused by the photonic crystal waveguide terminations 
(r1,2 = 0), the taper-photonic crystal waveguide junction can be characterised as 

 ൤ ்ܽ
ାሺܮሻ

ܽ௉஼
ି ሺ0ሻ൨ ൌ ቂݐ ᇱߢ

ߢ ᇱݐ ቃ ൤ ்ܽ
ାሺ0ሻ

ܽ௉஼
ି ሺܮሻ൨, (2.31) 

where κ and κ′ are coupling coefficients; t and t′ are transmission coefficients; L is the 
interaction length; ்ܽ

ାሺݖሻ and ܽ௉஼
ି ሺݖሻ are the amplitudes of the forward propagating 

fundamental fibre taper mode and the backward-propagating photonic crystal 
waveguide mode, respectively. Non-zero photonic crystal waveguide termination 
reflections result in feedback for the system. The reflected light may then couple back 
into the fibre as it re-enters the interaction region. In the presence of feedback, the 
normalised transmitted and reflected powers in the fibre taper are given by [132]: 
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(2.32) 

for ்ܽ
ାሺ0ሻ = 1 and ܽ௉஼

ି ሺܮሻ = 0. If one measures T and R and considers the equations of 
(2.32), the efficiency of the fiber-photonic crystal waveguide coupling can be 
determined, as measured by |κκ′|. 

In general, contra propagating modes have a very large mode number mismatch, so 
one could expect their inter-coupling to be weak. However, the periodicity of one 
waveguide offered by the photonic crystal can be considered as an “absorbing” 
element of this mismatch.  It is conventional to write the associated periodicity as 

 Ω ൌ
ߨ2
Λ , (2.33) 

where Λ is taken to be the period of the photonic crystal. 

A convenient method to apply the equations of (2.30) into the system depicted in    
Fig. 2.19 is done by converting them into slowly varying mode amplitudes A1 and A2, 
which are introduced via the relations 

 ௝ܽ ൌ ,௝݁ି௜ఉೕ௭ܣ ݆ ൌ 1, 2. (2.34) 

Substituting equation (2.34) into equation (2.30) results in exponential functions 
oscillating with spatial frequencies |β1 – β2| + Ω and |β1 – β2| - Ω. The high frequency 



 
 

56 

terms do not contribute substantially to the solutions since rapid oscillations tend to 
cancel out after integration. Thus, only the low frequency components are kept and 
the following system of approximate equations is obtained: 

ଵܣ݀ 

ݖ݀ ൌ  ଶ݁ିଶ௜ఋ௭ܣߢ݅

ଶܣ݀

ݖ݀ ൌ  ଵ݁ାଶ௜ఋ௭ܣߢ݌݅

(2.35) 

where p is set to -1, and using 

ߜ  ൌ ߚ െ  (2.36) ,ߗ

which is a detuning parameter. Renaming A1 as ்ܽ
ା  and A2 as ܽ௉஼

ି , we write the 
following boundary conditions: 

 ்ܽ
ାሺ0ሻ ൌ 1, ܽ௉஼

ି ሺܮሻ ൌ 0. (2.37) 

The solutions for this case are found to be 
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(2.38) 

where  

ଶߙ  ൌ ଶߢ െ  ଶ. (2.39)ߜ

In the limit of perfect tuning (δ → 0), the reflectivity can be expressed as the squared 
ratio of the backward propagating mode over the forward: 
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From this, the reflectivity increases monotonically with increasing coupling length 
and asymptotically approaches unity for L → ∞. 
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2.2.3 Coupling bandwidth 

As the parameter δ detunes from the limit of the perfect case, the coupling strength 
decreases. It is conventional to consider the detuning in terms of wavelength, and 
characterise the bandwidth of the system by the full width at half maximum, Δλ. The 
bandwidth is given by [133]: 

 
∆λ ൌ

ሻܮߢሺܩ

ܮ ቚ ݀
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 (2.41) 

with 

ሻܮߢሺܩ  ൌ 4ඥሺܮߙሻଶ ൅ ሺܮߢሻଶ (2.42) 

and α is real. The propagation constants can be written as 

ଵߚ  ൌ ݊ଵ݇ ଶߚ ൌ ݊ଶ݇, (2.43) 

where n1 and n2 are the effective refractive indices of the relevant modes of each 
waveguide and  

 ݇ ൌ
ߨ2
λ

. (2.44) 

A wavelength dependence on the refractive index is neglected, resulting in the 
immediate approximation 

 
∆λ ൌ

ሻܮߢሺܩଶߣ
ሺ݊ଵߨ2 ൅ ݊ଶሻ(2.45) .ܮ 

In the case where κL >> 1, the function G(x) approaches G(x) = 4κL [133] and the 
contra-directional bandwidth is approximately 

 
ߣ∆ ൎ
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, (2.46) 

where the refractive indices of the modes relevant to the system under study have 
been given. 

 



 
 

58 

2.2.4 Phase matching 

The coupling from one waveguide to another requires the transferring energy to be 
synchronised between the two guides. This synchronisation requires two conditions to 
be met. The frequencies must match and the wavevectors must match. This allows the 
phase angles to coincide during the cycles of oscillation.  

Both of the above conditions are quantified in a dispersion relation. Phase matching is 
given by the intersection of two modes superimposed on a dispersion relation graph, 
as shown in Fig. 2.20. In the case of an infinitely long tapered fibre with a photonic 
crystal waveguide, there is only a single point of intersection between the continuous 
dispersion curves. 

 

 

Figure 2.20. Dispersion relation for a photonic crystal waveguide (red lines) 
and a tapered fibre (blue line). The shaded region represents allowed bands 
into the photonic crystal. Modes above the light line (grey line) are not 
included. Dashed circles indicate modes for which phase-matched coupling 
occurs [9]. 

A quick note here: as previously mentioned, the slope of dispersion curves gives the 
group velocity of those modes. At the points of intersection as shown in Fig. 2.20, one 
can observe that the group velocities between taper mode and photonic crystal 
waveguide mode have opposite sign. This translates into contra-directional coupling. 

2.2.5 Mode spreading in k-space 

As opposed to straight, unperturbed tapered fibres, highly curved fibre tapers offer an 
interesting characteristic: their modes undergo an expanded k-space distribution. This 
can occur at the plane of a photonic crystal, which provides access to some interesting 
information for a given structure. For example, a closed photonic crystal waveguide 
(terminated by highly reflecting photonic crystal) gives rise to a series of discrete 
Fabry-Pérot resonances in place of a continuous dispersion curve. Coupling to such a 
structure with an expanded k-space distribution can characterise its dispersive 
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behaviour by monitoring the profile of spectral positions for the broadband-excited 
modes.  

 

 

Figure 2.21. The schematic and coordinate system used for mapping the fields 
of a curved tapered fibre onto a photonic crystal surface. The tapered fibre 
mode is shown for reference [134]. 

The bandwidth associated with evanescent coupling in a system as described above 
depends on both the degree of k-space broadening of the taper mode and the average 
slope of the waveguide dispersion curve. The k-space extent of the curved taper mode 
field can be calculated to a good approximation by directly mapping the fields from 
the coordinate system of the taper to that of a plane parallel to the photonic crystal as 
depicted in Fig. 2.21. Here, it is assumed that the curvature of the taper is sufficiently 
small such that the transverse mode profile is not significantly perturbed from the 
straight waveguide. If a field component of the uncurved taper mode is given in local 
coordinates by f(x′,y′), then the Fourier transform of the fields along the z-axis is 
given by [134]: 

 
෨ሺ݇௭ሻܨ ൌ න ݂ ቀ0, ඥݖଶ ൅ ሺܴ ൅ ݃ሻଶ െ ܴቁ ݁௜ఉோୟ୰ୡ୲ୟ୬ቀ ௭

ோା௚ቁ
ஶ

ିஶ
݁ି௜௞೥௭݀(2.47) ,ݖ 

where β is the propagation constant of the taper waist and all other variables are 
shown in Fig. 2.21. Ultimately, equation (47) gives the k-space distribution of the 
curved taper mode in the z-direction at the photonic crystal surface. These 
calculations are then summarized in Fig. 2.22 (a), showing that the k-space extent, and 
hence a greater bandwidth to characterise a photonic crystal waveguide, increases as 
the taper curvature radius decreases. 
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Figure 2.22. (a) The k-space interval (to 1/e2 of the peak) covered by the 
curved taper mode as a function of the radius of curvature. (b) Dispersion 
relation for a highly curved taper and a closed waveguide. The k-space 
distribution of the taper mode is shown by the shaded region and the Fabry-
Pérot modes of the closed waveguide are represented by the points. The 
corresponding horizontal bars show the approximate k-space extension of the 
Fabry-Pérot modes. The dashed line represents a calculated waveguide mode 
[134]. 

Figure 2.22 (b) shows the dispersion relation of the expanded k-space distribution for 
the curved tapered fibre and its overlap with the associated Fabry-Pérot resonances for 
a closed photonic crystal waveguide. The expanded k-space distribution allows for a 
large portion of the closed photonic crystal waveguide to be probed, and its dispersive 
properties can be obtained by measuring the wavelengths of the resonances. 

If it is assumed there is no phase change at the point of reflection from the cavity ends 
– ignoring the penetration depth into the photonic crystal – then the k-space interval 
between each successive resonance is Δk = 2π/2L, where L is the length of the closed 
waveguide. The dispersion curve may then be reconstructed by converting the 
wavelengths to normalised frequency for the dispersion relation, and ordering them by 
frequency with a spacing of Δk. The absolute wavevector must be estimated with 
knowledge of the taper k-space distribution or comparison with simulation. 

The group velocity of a closed photonic crystal waveguide mode in terms of 
wavelength may be estimated by the formula: 

௚ݒ 

ܿ ൌ
ிௌோߣ∆ܮ2

଴ߣ
ଶ , (2.48) 

where ΔλFSR is the free spectral range between adjacent resonances and λ0 is the 
central wavelength between the resonances. (2.48) is derived from the equation 
governing the free spectral range of a Fabry-Pérot etalon as Δλ = (λ0)2/(2n(g)l+λ0) ≈ 
(λ0)2/(2n(g)l). This approach is similar what has been used in similar work to 



 
 

61 

characterise Fabry-Pérot modes of a photonic crystal structure [135, 136], however in 
those works either an internal light source or free space coupling is required to excite 
the modes.  

2.2.6 Characterising propagation loss 

Examination of Q-factor and the coupling strength to a closed waveguide mode can 
give a direct estimate of the photon lifetime in a cavity and thus an estimate of 
propagation losses. The intrinsic Q can be related to two sources of losses: the 
propagation losses, αprop, which include absorption and scattering, and out of plane 
losses incurred at the cavity terminations. It follows [136]: 

ߨ2 
ܳߣ ൌ

௣௥௢௣ߙ

݊௚
൅

1 െ ݎ
݊௚ܮ , (2.49) 

where ng is the group index of the mode as obtained from the dispersion relation, λ is 
the wavelength of the mode, Q is the inferred intrinsic Q-factor of the mode, r is the 
reflectivity at the cavity terminations (r < 1), and L is the length of the cavity. By 
comparing the Q obtained from different cavity lengths, one can determine the r at the 
closed waveguide ends and therefore retrieve the propagation losses as a function of 
wavelength and group velocity. 

2.2.7 The profile of tapered fibres 

The successful fabrication of tapered fibre nanowires is crucial to achieve the 
evanescent coupling. The following provides a mathematical description for the 
profile of optical fibre tapers [137]. No knowledge of fluid mechanics is required, 
barring elementary mass conservation, as the tapering is performed sufficiently slow 
such that there are no strong dynamics and the system is in a quasi-equilibrium. The 
principle assumes a local section of the fibre cylinder is heated to a uniform 
temperature, enough to soften the glass for stretching, but not enough to cause it to 
sag under its own weight. The ends of the taper are steadily pulled apart to create a 
profile as shown in Fig. 2.23 (a). At the time t + δt, the hot glass cylinder has 
stretched to form a narrower cylinder of length L + δx, where compression is ignored 
so δx must be positive (Fig. 2.23 (b)). The hot-zone has changed to L + δL, where δL 
may be negative due to arbitrary control of the heat source. The instantaneous length 
lw of the taper waist at time t is equal to the hot-zone length at that time, implying that 
the final waist length equals the final hot-zone length. 
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Figure 2.23. (a) The structure of a fibre taper (nanowire), indicating waist, 
transition and untapered regions. (b) Schematic diagrams of a cylindrical taper 
waist at time t where AB is uniformly heated, and time t + δt, where AB has 
been elongated by δx. The latter forms a narrower cylindrical taper waist, 
where A′B′ is still heated [137].  

The volume of the cylinder at time t must equal its volume at t + δt, given by 

௪ݎሺߨ  ൅ ܮ௪ሻଶሺݎߜ ൅ ሻݔߜ ൌ ௪ݎߨ
ଶ(2.50) ,ܮ 

where δrw is the change in the cylinder’s radius and is negative. In the limit δt → 0, 
equation (2.50) can be rewritten to give a differential equation 
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 (2.51) ,ܮ2

which governs the variation of waist radius with extension x. One may then arrive at 
an expression for rw(x) by using the initial condition rw(0) = r0: 
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2.2.8 Adiabaticity 

Optically, the taper transition regions transform the local fundamental mode from a 
core mode in the untapered fibre to a cladding mode in the tapered waist. However, if 
the transformation is to be accompanied by small loss of light from the original 
fundamental mode, the shape of the taper transitions must be sufficiently gradual to 
satisfy a criterion for adiabaticity at every point [138, 139]: 
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where β1 and β2 are respectively the local propagation constants in the transition 
region for the fundamental mode and the mode to which power is most likely to be 
lost. Of course, it is also desirable for the transition to be as short as possible, 
allowing the resulting component to be compact and insensitive to environmental 
degradation. Therefore there is an optimal taper profile that is gradual enough to 
remain adiabatic yet short as possible to be practically robust. 
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2.3 Surface Tension 

In the work of this thesis we are interested in several relevant microfluidic phenomena. 
The first of these is surface tension. Ultimately, surface tension is responsible for the 
surface of a liquid behaving like an elastic sheet. It allows insects, such as the pond 
skater, to stand afloat on water, causes liquids to form droplets and is responsible for 
capillary action. Surface tension has the dimensions of force per unit length, or 
equivalently energy per unit area. It is often termed as surface energy. 

The physics behind surface tension can be understood qualitatively by considering the 
interface between a liquid and another medium (for example air). The molecules at 
the surface of the liquid are attracted by intermolecular forces to other liquid 
molecules, resulting in a net force of the surface molecules to within liquid (see      
Fig. 2.24). This net effect ultimately causes the body of fluid to contract such that it 
occupies a sphere. Quantitatively, the molecules at the surface of the liquid experience 
an energy deficit ≈ U/2, where U = kT is the cohesion energy per molecule. If the area 
per molecule is given by r2, where r is the radius of the molecule, then the surface 
tension is given by 

ߛ  ൌ
ܷ

ଶݎ2 , (2.54) 

which is given by units of Joules per square metre. 

 

            
Figure 2.24. (a) Illustration of the interface between a liquid and another 
medium. The molecules at the surface of the liquid experience a net force 
attraction into the liquid. (b) Table representing the surface tensions of some 
common liquids at 20°C. 

Another way to understand surface tension is to consider a partially submerged object 
as shown in Figure 2.25. The total force on the object = weight + buoyancy force + 
surface tension force. By knowing the weight and perimeter of the object, removing 
the buoyancy force (setting d = 0), one can determine the surface tension force = 
pγcosθ. Subsequently, its surface tension, γ, and contact angle, θ, can be obtained. 

(a) (b) 
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This technique is known as the Wilhelmy method. The three-phase line shown in the 
figure is where the perimeter is taken, which is the point where the three separate 
substances meet. 

 

 
Figure 2.25. Illustration of the Wilhelmy method for how one can measure 
surface tension force.  

This flows on to another concept worth mentioning: contact angle, which is the angle 
formed where a fluid-fluid (i.e. liquid-gas) interface meets a solid. The contact angle 
is specific for a given system and is determined by the interactions across the three 
media. This is most typically illustrated by the meniscus formed from a droplet of 
liquid resting on a solid surface in air, as for Fig. 2.26. In cases where the contact 
angle is low (less than 90°) and the droplet spreads across the surface, it is described 
as wetting that surface. If the fluid is water, such a surface is said to be hydrophilic (or 
hydrophobic when the contact angle is greater than 90°).  

 

 

Figure 2.26. Images displaying the contact angle of different fluids on a 
silicon surface: (a) oil; (b) ultra-violet curable glue; (c) water.  

The shape of the droplet can be determined by the Young-Laplace equation, which 
describes the pressure difference sustained across the interface of two static fluids due 
to surface tension. It is a statement of normal stress for the fluids, where the interface 
is treated as a zero-thickness surface: 

 

(a) (b) (c) 
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where Δp is the capillary pressure difference across the fluid interface, γ is the surface 
tension, û is the unit normal to the surface, H is the mean curvature, and R1 and R2 are 
the principle radii of curvature. Only a normal interface is considered, as a static 
interface is not possible under tangential stress. 

A phenomenon as a result of contact angle is capillary action, which causes a fluid to 
propagate through thin tubing. It can occur upward against gravity when the adhesive 
intermolecular forces between the liquid and tubing are greater than the cohesive 
intermolecular forces inside the liquid – i.e. when the liquid has a low contact angle 
with the tubing, thus forming a concave meniscus. The reverse will happen when a 
convex meniscus is formed (weak wetting) between the liquid and tubing surface, 
such as with mercury and glass, as depicted in Fig. 2.27. 

 

 
Figure 2.27. Illustration of capillary action. Red tubes represent contact angles 
less than 90°, blue for greater than 90°.  

Capillary action occurs often in everyday life and nature. Sponges are able to soak 
water into them via their pores which behave like capillaries. It allows trees to soak 
water from the ground to its leaves. It is essential for draining the constantly-produced 
tear-fluid from our eyes. Its effects are studied on the International Space Station to 
investigate appropriate ways for propagating fluids in situations of very low gravity. 
More relevant to this work, capillary action is interesting to the optofluidic 
community for lab-on-a-chip concepts, where fluids can be transported to and from a 
localised region for dynamic device reconfigurability. In particular to this work, it is 
relevant to the infiltration of a fluid into the nanometre-scale holes of a photonic 
crystal. 
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Chapter 3 
 
Evanescent coupling into photonic 
crystals 
 

This chapter presents three articles relating to the development of nanowire 
evanescent coupling into modes in photonic crystals. As mentioned in section 1.2, 
two-dimensional photonic crystal structures have become a promising class of 
dielectric structure for micro- and nano-photonics. A major challenge, however, is 
efficiently inserting light into modes suspended by their geometry. The first two 
articles describe evanescent coupling as both an efficient and non-invasive approach 
to achieving this end. The third article presents the ability of the nanowire evanescent 
coupling scheme to characterise the dispersive properties of photonic crystal 
waveguides in a single measurement. 

3.1.1 Bow- and loop-shaped nanowires 

The photonic crystal structures used in the following articles are formed into the 
surface of chalcogenide wafers. Surrounding the photonic crystal is unpatterned 
material. When using the tapered silica nanowires to couple to modes of the photonic 
crystal structures, it is necessary to localise the coupling to the particular waveguide 
or cavity of interest. Without meeting this criterion, the evanescent field from the 
nanowire interacts with either undesired sections of the photonic crystal or bulk 
substrate. Both of these situations result in unwanted loss and adversely affect the 
quality of the measurements. 

The coupling localisation is achieved by inducing a shape into the nanowire. The first 
article introduces a bow-shape into the nanowire, formed by moving the two ends of 
the fibre closer together and allowing gravity to give rise to a curved profile. This 
enables local coupling along the length of a waveguide defect in a photonic crystal. 
The second article introduces a loop-shape into the nanowire. The loop is formed by 
first moving the two ends of the fibre together to create slack, and then rotating one 
end until there is enough torsion to cause the loop. The loop dimensions may then be 
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reduced by moving the ends apart, thereby shortening the coupling length to the order 
of a micron. It is shown that this is sufficient to exclusively couple to a point defect in 
a photonic crystal structure. More details on the fabrication of silica nanowires can be 
found in section 1.5.3. 

3.1.2 Characterising dispersion of photonic crystal waveguides 

The evanescent coupling looped nanowires are utilised to experimentally characterise 
the dispersive properties of closed photonic crystal waveguides. This is achieved by 
monitoring Fabry-Pérot resonances generated by the closed waveguide and, noting 
that the resonances occur at equal spacing in reciprocal space (k-space), retrieving the 
dispersion of the structure from the spectral profile of the free spectral ranges between 
the resonances. The small radius of curvature in the loop leads to an increased 
coupling range in k-space, representing a crucial element for the technique.  

The nanowires in the following articles and through the thesis are comprised of ~10 
mm transition regions to either side of a 3 mm taper waist. The radii of the induced 
loops are ~50 μm. 

Contributors 

In the first of the following three articles, reproduced from Optics Express Vol. 14, 
pp. 1070–1078, 2006, Dr. Christian Grillet wrote the majority of the manuscript and 
performed FDTD analyses. This thesis author’s contributions were as follows: 

• Performed many of the experimental measurements and tapered fibre 
fabrication 

• Provided some of the figures presented 

• Contributed to the writing of the manuscript 

The second article, reproduced from Physica B-Condensed Matter Vol. 394, pp. 289-
292, 2007, was written by this thesis’ author. The contributions were as follows: 

• Performed the presented experimental measurements and tapered fibre 
fabrication 

• Provided all of the figures presented 

• Contributed significantly to the writing of the manuscript 

The third article, reproduced from Optics Express Vol. 16, pp. 13800-13808, 2008, 
was first-authored by Michael W. Lee, who also performed the experiments. This 
thesis author’s contributions were as follows: 

• Provided expertise for characterisation and tapered fibre fabrication 
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• Contributed to the writing of the manuscript 

The photonic crystal samples used in these articles were fabricated by Darren 
Freeman at the Australian National University.  

Formal acknowledgement of the contributions of the author of this thesis is included 
in Appendix A. 
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3.2 Epilogue 
 

The effects of propagating light along a looped, self-touching tapered optical fibre 
have been previously investigated [140-142]. It has been shown that self-coupling 
occurs near the contact point which gives rise to interference oscillations in the 
transmission spectrum. As illustrated in Fig. 3.1, the cause of the oscillation can be 
described by the interference of two coherent beams as: 

 ܲሺߣ଴ሻ ൌ |ܽଵሺߣ଴ሻexpሺ݅ߚሺߣ଴ሻܵሻ ൅ ܽଶሺߣ଴ሻ|ଶ. (3.1) 

In this case, beam 1 propagates through the loop with an amplitude of 
a1(λ0)exp(iβ(λ0)S), where S is the loop length and β(λ0) is the wavelength-dependant 
propagation constant. Beam 2 propagates directly through the crossover point with an 
amplitude of a2(λ0), circumventing the rest of the loop. 

 

Figure 3.1. Illustration of two interfering waves (dashed) contributing to the 
transmission spectrum of the self-coupling microloop. 1 – a wave propagating 
through the loop; 2 – a wave propagating through the self-coupling region 
[142]. 

The interference is particularly noticeable in the second article presented above, 
where the oscillations cause a “ripple” to superimpose over the transmission spectra. 
Ideally this can be ignored by cancelling the ripple out with a reference trace. 
However, the effect is dynamic due to the entire loop “breathing” on scales of 
nanometres over periods of seconds. The breathing becomes especially significant 
when intermolecular forces have non-trivial influence on the nanowire as it comes 
into close proximity with the photonic crystal surface. This causes a change in the 
loop’s length and therefore the phase of beam 1 at the point of interference. 
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3.2.1 Helical nanowire 

Figure 3.2 below is an image of a helical evanescent coupling nanowire. The helical 
characteristic overcomes the issue of self-coupling caused at the touching crossover 
points. The ability to localise coupling to photonic crystal cavities is not adversely 
affected as the radius of curvature remains ~50 μm.  

 

Figure 3.2. Top view image of a helical-shaped nanowire. The focal plane is at 
the lowest point of the helical nanowire, with the side “wings” approaching 
the viewer and shifting out of focus. 

The helical nanowire is formed by annealing the silica glass nanowire with a flame 
after it has been looped. By careful manipulation, the loop may be pried open without 
it necessarily returning to contact. This not only removes self-coupling but improves 
the stability for taking time-consuming measurements. The only drawback is an 
observed 2 dB of added scattering loss through the nanowire, which for the work of 
this thesis did not present a significant problem. 

Summary 

This work forms the foundation for the remaining work of the thesis, enabling the 
ability to characterise the properties of a photonic crystal structure.  

The paper reproduced from Optics Express Vol. 14, pp. 1070–1078, 2006 made the 
following advancements: 

• Efficient (98%) coupling between highly nonlinear chalcogenide planar 
photonic crystal waveguide and silica fibre nanowire.  

• A 3dB coupling bandwidth of 12 nm was in good agreement with theory. 

The paper reproduced from Physica B-Condensed Matter Vol. 394, pp. 289-292, 
2007, made the following advancements: 

• Coupling between a photonic crystal cavity and silica fibre nanowire 

The paper reproduced from Optics Express Vol. 16, pp. 13800-13808, 2008, made the 
following advancements: 
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• Utilising the evanescent coupling scheme to monitor the dispersion in a single 
measurement of a closed photonic crystal waveguide without access 
waveguides. 

• Propagation losses may also be inferred from the measurements. 
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Chapter 4 
 
Adjusting photonic crystal cavity 
resonances 
 

This chapter presents an article exploring nanowire evanescent coupling into photonic 
crystal cavities designed as single photon sources. Two important concepts are 
highlighted in this work. On one hand, the coupling technique enables the 
characterisation of ultra-small (0.5(λ/n)3) and high-Q cavities. On the other, it is 
shown that the nanowire can itself perturb the modes within a microcavity, for which 
a shift in resonance of up to 3 nm is reported. This latter point is particularly relevant 
to the spectral alignment of quantum dots to their host microcavities, which is a 
crucial problem to overcome to efficiently extract single emitted photons. 

The underlying goal of this work is to develop quantum cryptography with single 
photon sources, which would utilise quantum mechanics to guarantee completely 
secure communication. Embedding a quantum dot (or quantum dots layer, as shown 
in Fig. 1) within a photonic crystal cavity provides a potential means toward this end 
with two key aspects. Firstly, the presence of the cavity enables controlled direction 
of the quantum dot emission, therefore improving device efficiency. Secondly, the 
exciton density of states may be manipulated by through the Purcell effect, which is 
related to the properties of the cavity and allows optimisation of the emission rate of 
the quantum dots.  
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Figure 4.1. The looped silica nanowire is brought in to close proximity with 
the InP photonic crystal microcavity. The structures are designed with an InAs 
quantum dots layer through the centre of the suspended membrane.  

Figure 4.1 illustrates the experiments of this work. A looped nanowire evanescently 
couples to a photonic crystal cavity, probing its properties. Adjustment of the 
nanowire’s orientation with respect to the cavity geometry, as well as its proximity to 
the cavity, results in a shift of the cavity resonance. This is due to the nanowire’s 
perturbing effect on the resonant mode’s effective refractive index. 

 

              

Figure 4.2. (a) Schematic of the photonic crystal cavity design. (b) Scanning 
electron microscope image of a typical microcavity used in the following 
article. 

The effect of quantum dots in the system is not explored specifically in this work, 
instead providing a backdrop to motivate the cavity investigation with nanowires. 
Figure 4.2 illustrates the design of the cavities to provide small modal volumes and 
high Q-factors. The fabrication details of these cavities is mentioned in reference 
[143]. 

 

 

(a) (b) (
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Contributors 

In the following article reproduced from Optics Express Vol. 15, pp. 1267–1276, 
2007, Dr. Christian Grillet wrote the majority of the manuscript. This thesis author’s 
contributions were as follows: 

• Performed the presented experimental measurements 

• Fabricated tapered fibre for experiment 

• Contributed to the writing of the manuscript 

The InP samples were fabricated by the Institute for Microstructural Sciences at NRC, 
Canada, which is also where the photoluminescence spectra were obtained. 

Formal acknowledgement of the contributions of the author of this thesis is included 
in Appendix A. 
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4.1 Epilogue 

 

Figure 4.3 presents some results that were not published, using samples fabricated by 
the same group as the collaborators of the article above. The results below highlight 
the ability of the evanescent coupling technique to observe high Q-factors (> 30,000) 
and reinforce the perturbing effect the nanowire can have on the system. As the 
results portray, decreasing the distance between nanowire and photonic crystal cavity 
has several noticeable effects to the cavity’s resonant mode. The Q-factor decreases 
since there is a greater channel for the photons to escape the system. This coincides 
with a greater coupling strength to the modes. The resonance also shifts to longer 
wavelengths as the effective refractive index is increased due to the closer presence of 
the nanowire. 

 

         

 

Figure 4.3. From left to right, the distance between nanowire and cavity 
surface is decreased. The nanowire is in contact with the photonic crystal in 
(c). (a) Q = 33,600; (b) Q = 21,800; (c) Q = 8,300. 

The distance between nanowire and photonic crystal surface is not specified in this 
work. Obtaining such information accurately is experimentally difficult due to both 
the changing position of the nanowire over time as well as the attraction between the 
nanowire and the wafer surface. Precise knowledge of this would enable detailed 
consideration of the effects related to coupling to TM slab modes and vertical 
confinement asymmetry. 

Summary 

This work represents the first demonstration of tuning the resonance of a photonic 
crystal cavity for the thesis.  

The paper reproduced from Optics Express Vol. 15, pp. 1267–1276, 2007, made the 
following advancements: 
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• Demonstration of coupling to the smallest photonic crystal cavity at the date of 
publication (0.5(λ/n)3). 

• Tuning the Q-factor and wavelength of the cavities were shown to be tuned 
independently. 
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Chapter 5 
 
Photosensitive post tuning of photonic 
crystals 
 

This chapter presents an article investigating the photosensitive aspect of 
chalcogenide glass to post-tune the properties of a photonic crystal structure. A 
technique is proposed that exposes a photonic crystal formed in chalcogenide glass to 
laser light at frequencies for which the material absorbs. The result is a change in the 
material’s refractive index as well as an expansion of its volume, thereby altering the 
properties of the photonic crystal. Such a scheme may be employed at any time after 
the initial device is made, either to potentially account for fabrication tolerances or to 
arbitrarily optimise a structure for flexible functionality. 

The photonic crystal structures in the article are all W1 waveguides formed in 
Ge22As12Se55 chalcogenide glass. For the experiments, the entire waveguide and 
photonic crystal section is exposed to HeNe laser light (633 nm). The glass absorbs at 
this wavelength and undergoes structural change, resulting in a 5 nm shift in the 
waveguide mode resonance. This demonstration paves the way toward realising more 
sophisticated geometries by selectively post-tuning a local region of a photonic crystal 
structure.  

Contributors 

In the following article reproduced from Optics Express Vol. 15, pp. 1277–1285, 
2007, Michael W. Lee wrote the majority of the manuscript and performed the bulk of 
experiments. This thesis author’s contributions were as follows: 

• Provided expertise for characterisation and tapered fibre fabrication 

• Contributed to the writing of the manuscript 

Formal acknowledgement of the contributions of the author of this thesis is included 
in Appendix A. 
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5.1 Epilogue 

 

Following the work detailed in the article above, initial work has begun to investigate 
inducing cavities into photonic crystals by means of exploiting photosensitive effects. 
Here, the samples (still Ge22As12Se55) undergo a negative Δn refractive index change. 
Therefore, to induce a high-Q cavity with greater refractive index than its surrounds, a 
shadow mask is required as illustrated in Fig. 5.1. 

 

 

Figure 5.1. Top view illustration of the exposure experiment to induce a cavity. 
A shadow mask is used to maintain a local region of higher refractive index 
whilst the surrounding sections have theirs exposed and thus lowered. 

Figure 5.2 displays initial results of an experiment performed as per Fig. 5.1. During 
exposure, a cavity resonance steadily becomes more pronounced. After 20 minutes of 
exposure, the cavity resonance is clearly observed, possessing a Q-factor of Q ≈ 2,000. 
However, this is not an especially high value, despite the experiment being a first-
attempt. One possible reason for this is that the Δn is less than expected, which could 
be due to the particular batch of chalcogenide material. Other possible explanations 
for the low Q include the presence of the nanowire affecting the results and other 
parasitic losses caused during exposure. 
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Figure 5.2. Trace of a photosensitive induced cavity after 20 minutes of 
exposure. The cavity resonance is steadily more pronounced throughout the 
exposure.  

Figure 5.3 shows an image of the photonic crystal waveguide structure after the 
exposure experiment. An observable line representing the formation of a double-
heterostructure is clearly evident. 

 

 

Figure 5.3. Image of the photonic crystal waveguide after the shadow mask 
exposure experiment. 

Improving on these results may utilise a chalcogenide glass that possesses a positive 
Δn change. This would then allow a single laser spot to induce a cavity rather than 
requiring a shadow mask. This has the advantage of a gentle refractive index profile – 
a Gaussian – to more strongly confine photons for high-Q resonances, as shown in  
Fig. 5.4. 
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Figure 5.4. Using a material with a positive Δn allows one to simply write a 
laser spot onto the structure. This would enjoy a Gaussian profile – ideal for 
high-Q cavities. 

More sophisticated photonic crystal functionalities may be demonstrated as a follow-
up to this work. Examples include the introduction of access channels between 
fabricated waveguides, or even coupled resonator optical waveguides (CROWs) 
which could be formed by parallel double-heterostructures.  

Summary 

This work represents the first demonstration for photosensitive post-tuning of a 
photonic crystal waveguide structure.  

The paper reproduced from Optics Express Vol. 15, pp. 1277–1285, 2007, made the 
following advancements: 

• First experimental results for photosensitive post-tuning of a photonic crystal 
waveguide, made from chalcogenide glass. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

123 

 
 
 
Chapter 6 
 
 
 

Microfluidic photonic crystal cavities 
 

This chapter presents three articles relating to a microfluidic approach to post-tune 
photonic crystal cavities. As noted in the Chapter 2, the formation of a cavity within a 
photonic crystal requires modification of the lattice in some way. In this work that 
modification is achieved by infiltrating the holes of a photonic crystal with a fluid. 
The infiltration of holes with a fluid increases their refractive index and therefore 
changes the device’s optical properties. The liquid infiltration scheme offers two 
promising methods to postprocess photonic crystal cavities. Firstly, the inherent 
mobility of fluids enables significant refractive index change to occur in the holes. 
Secondly, the fluids themselves can easily be doped with functional components. 

The first article presents a proof-of-concept demonstration for infiltrating a region of 
holes in a planar photonic crystal that forms a double-heterostructure cavity. The 
dispersive effects of the photonic crystal are shown to manifest in the free-spectral-
range of the Fabry-Pérot resonances. The second article presents high Q-factors in the 
microfluidic cavities of silicon-based photonic crystals, with values reaching Q = 
57,000. These results are discussed in terms of sensing potential. The third article 
presents a complete reconfigurability of this technique, demonstrating accurate 
changes in cavity length and then erasing the penetrated fluid entirely. As the cavity 
lengths are changed, the trends of Q-factor, resonance frequencies and tolerance of Q-
factor are investigated. 

Infiltration technique 

The infiltration of liquid into the air holes of a planar photonic crystal involves the use 
of a tapered glass microtip, whose apex diameter is reduced to ∅ = 220 nm, and 
piezo-electric manipulation stages to make use of the microtip. The glass microtip is 
first moved by the manipulation stages into a fluid reservoir, gathering a small volume 
that remains attached due to adhesive forces. The gathered fluid forms into droplets 
along the length of the microtip, which may then be deposited in proximity to the 
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photonic crystal to be infiltrated. The array of droplets offers a range of choice in 
volume. The microtip may then be used to select a droplet of appropriate volume and 
draw it across the photonic crystal. Providing the wetting properties of the fluid and 
photonic crystal material are both amenable to the process, the fluid will penetrate the 
pores via capillary action and remain suspended there. It is advisable to use a fluid 
that is non-volatile (such as oil) and also optically lossless at wavelengths of interest. 

           

 

Figure 6.1: The liquid infiltration apparatus. (a) SEM image of a tapered glass 
microtip with apex diameter ∅ = 220 nm. (b) Infiltration setup, consisting of 
150× microscope and piezo-electric stages to manipulate the tapered microtip. 
(c) Microscope image of the infiltration technique showing fluid reservoir, 
photonic crystal section and the glass microtip manipulating a small volume of 
fluid. 

Contributors 

In the first of the following three articles, reproduced from Applied Physics Letters 
Vol. 91, 121103, 2007, the author of the thesis wrote the article. This thesis author’s 
contributions were as follows: 

• Performed the microfluidic infiltration and characterisation measurements 

• Performed calculations and provided the figures presented 

(a) (b) 

(c) 
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• Contributed the majority of writing of the manuscript 

In the second of the following three articles, Optics Letters Vol. 33, 2008, Uwe Bog 
shared an equal part in the undertaking of experiments and primarily wrote the 
manuscript. This thesis author’s contributions were as follows: 

• Performed the presented experimental measurements 

• Fabricated tapered fibre for experiment 

• Contributed to the writing of the manuscript 

In the third of the following three articles, Optics Express Vol. 16, pp. 15887-15896, 
2008, Uwe Bog shared an equal part in the undertaking of experiments while the 
author of this thesis primarily wrote the manuscript. This thesis author’s contributions 
were as follows: 

• Performed the presented experimental measurements 

• Fabricated tapered fibre for experiment 

• Contributed the majority of writing for the manuscript 

Formal acknowledgement of the contributions of the author of this thesis is included 
in Appendix A. 
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6.1 Epilogue 
 

The discussion section of the third article mentions a comparison of the fluid 
infiltration technique to that of what liquid crystals may offer. If one considers a static 
geometry, where the fluid remains in the holes and the thermal or electrical tuning of 
the liquid crystal is the basis for tunability, device timescales would be on the order of 
10’s of μs. This is much faster than the complete infiltration or removal of fluid that 
can currently be achieved. However, this is still too slow for signal timescales, and if 
used for reconfigurability then perhaps it would be “overkill”. In addition, liquid 
crystals offer an index contrast of n ~ 0.05 by thermal or electrical tuning, which is an 
order of magnitude less than what the available range of infiltration fluids could span, 
n ~ 1.3 – 1.8 (n ~ 0.5). Nevertheless, because liquid crystals offer a base refractive 
index range of n ~ 1.45 – 1.7, they could be advantageously combined with the 
microfluidic double heterostructure scheme to provide both highly tunable (via 
electrical or thermal excitation) and reconfigurable (via fluid replacement) optical 
functionality. 

6.1.1 Propagation losses and reflectivity 

A major result of the third article in this chapter is the demonstration of varying 
microfluidic cavity lengths. From this, the relevant information is available to use 
equation (49) of Chapter 2 to simultaneously solve the reflectivity at the end facets of 
the cavity and propagation losses along the waveguide. For cavity lengths 11.5 μm 
and 13.8 μm with Q-factors of 14434 and 14732 respectively at a wavelength λ = 
1409 nm, and using a group refractive index of the modes ng = 20 (±15%), equation 
(49) can be solved to reveal a reflectivity of: 

r = 0.9914 ± 0.0013,  

and a propagation loss of: 

αprop = 54 ± 8 cm-1. 

These values are close to what one would expect considering the values presented in 
reference [136]. 

Summary 

This work represents the investigations of introducing fluids to the air holes of planar 
photonic crystals to increase their functionality. 

The paper reproduced from Applied Physics Letters Vol. 91, 121103, 2007, made the 
following advancements: 

• First demonstration of microfluidically-defined photonic crystal cavities. 
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• Dispersion associated with the photonic crystal in good agreement with 
theory. 

The paper reproduced from Optics Letters Vol. 33, 2008, made the following 
advancements: 

• High Q-factors of up to 57,000 demonstrated in microfluidic photonic crystal 
cavities. 

The paper reproduced from Optics Express Vol. 16, pp. 15887-15896, 2008, made the 
following advancements: 

• Spectral and spatial configurability of photonic crystal cavities is achieved. 

• High Q-factors for a broad range of cavity lengths are shown. 

• Fluid can be removed by immersion in toluene, demonstrating 
reconfigurability. 
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Chapter 7 
 

Comments and Outlook 
 

The following section provides some author comments on the work that comprises 
this thesis and attempts to answer perhaps the most paramount question: where is it all 
going? 

Firstly, some comments on the bow-, loop- and helical-shaped nanowire evanescent 
coupling technique. This scheme is capable of monitoring Fabry-Pérot resonances of a 
closed waveguide, enabling immediate access to the waveguide’s dispersion and 
propagation losses in a quick, single spectral measurement [134]. This circumvents 
the need to use integrated access waveguides or internal light sources that may affect 
the spectral signature. As such, the strength of the nanowire coupling nanowire rests 
in its ability to accurately characterise photonic crystal structures non-invasively. 

In terms of miniaturised components, it is, in its current stage, impractical to 
incorporate a suspended and finely shaped fibre above a planar photonic crystal 
device. This would be cumbersome in terms of both packaging and fabrication. 
However, device incorporation is not the anticipated path of nanowire evanescent 
coupling. As far as utilising it at a research level, it has been almost ideal to test a 
variety of novel structures. It is feasible to consider employing the technique to 
rapidly probe sample structure sets, although it may require dedicated closed 
waveguide sections. Nanowire evanescent coupling could also be beneficial to slow 
light dispersion engineering [34], where a measurement could be performed without 
the need for enhancing the coupling into the slow light regime.  

Next, some comments on exploiting photosensitivity in chalcogenide glass photonic 
crystals. There are still challenges to overcome, for example obtaining a suitable 
material that would behave both stable and predictably. That being said, initial proof-
of-concept results have been achieved, and future demonstrations could promote this 
as a flexible, elegant approach to optimising or writing photonic crystal structures 
after the fabrication stage. 
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There are several applications possible from utilising chalcogenide glass 
photosensitivity, for which some early predictions have since been demonstrated after 
the initial results in [93]. The photosensitive tunability available in chalcogenide glass 
has allowed the spectral alignment between a photonic crystal cavity resonance and 
quantum dot emission [96], offering a means to overcome a crucial challenge for 
single photon source quantum electrodynamics experiments. In the near future, the 
ability to write a photonic crystal cavity into a waveguide structure is particularly 
relevant. This could result in a post-processed double heterostructure cavity, 
potentially reaching Q-factors of 30,000 [118] – perhaps even beyond by a carefully 
written Gaussian refractive index profile.  

Lastly, some comments on the microfluidic infiltration of select holes in a slab 
photonic crystal. There are still a number of challenges to overcome, including 
accurate knowledge of the penetration depth of the fluid in the holes, as well as highly 
selective infiltration – i.e. single-hole infiltration. That being said, the challenges that 
were presented initially during the investigation have been steadily overcome, such as 
removing the fluid from the holes and several-micron-selective infiltration. It seems 
reasonable to suggest that the outlook in terms of what will be achieved in the coming 
years is promising. 

However, that does not answer the question of where the work is going. Professor 
Thomas Krauss made an insightful comment on this: “the fact that you can stick a 
blob of fluid onto the chip and get a high Q cavity is noteworthy”. The key ingredient 
of the microfluidic approach is that fluids are inherently mobile, so it is natural to 
consider the scheme for not only creating a device, but a reconfigurable device. 
Currently, photonic crystal cavities are limited by the difficulty in altering their 
properties after fabrication, reducing diversity for applications in tunable photonics 
and adaptable sensing schemes. The potential to realise complex geometries and 
arbitrarily defined components in a photonic crystal via microfluidic infiltration paves 
the way toward sophisticated and flexible photonic crystal architectures. 

The microfluidic infiltration may be a potentially reconfigurable approach, but it is 
also flexible in other promising ways. There are many interesting fluids and colloidal 
mixtures one could incorporate into the holes of a planar photonic crystal. Fluorescent 
dyes and cocktails containing quantum dots or nonlinear components offer a means to 
incorporate additional functionality. Liquid crystals promote further tunability by 
means of their thermal- or electro-tuning capability – this is on top of the 
reconfigurability aspect offered by the virtue of the solutions being a fluid. Recent 
work has taken an interest in ionic liquids – salts that are liquid at room temperature – 
due to their ability to dissolve practically anything. In addition to this trait, ionic 
liquids are currently recognised as solvents for green chemistry due to their non-
volatile nature. However, the ions themselves would introduce a new source of 
damping due to their inability to conduct Ohmic currents. 
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The potential for analyte sensing offered by the microfluidic infiltration scheme was 
mentioned [144]. One of the major advantages here is that the holes of a slab photonic 
crystal occupy approximately 0.1 fL. That leads to the requirement of an incredibly 
small volume of fluid to be sensed. Reference [144] estimates a potential sensitivity 
Δλ/Δn of 60 nm / RIU (refractive index units) and considers a minimum refractive 
index change detectable of δnfluid = 4.5×10-4. This value is favourable to other 
photonic crystal cavity chemical sensing schemes (δnfluid = 0.002 [86]), although the 
ratio of electromagnetic energy overlapping the holes where the analyte resides 
appears limited to ~6%. The field overlap and therefore the sensitivity could be 
improved by additional engineering of the cavity geometry. 

As a final word, the glass micro-tip drawing scheme is amenable to robotics and 
actuators. By rigorously investigating the wetting properties of the fluid, the fluid 
manipulator and the sample surface, one could feasibly translate this approach to 
mass-production. There are also recent demonstrations of electrowetting capabilities 
that could be cleverly incorporated into the approach, decreasing reconfiguration 
times and possibly avoiding the necessity of a fluid manipulator tip altogether. 

 

END OF THESIS 
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