2,919 research outputs found

    Capacitors can radiate - some consequences of the two-capacitor problem with radiation

    Full text link
    We fill a gap in the arguments of Boykin et al [American Journal of Physics, Vol 70 No. 4, pp 415-420 (2002)] by not invoking an electric current loop (i.e. magnetic dipole model) to account for the radiation energy loss, since an obvious corollary of their results is that the capacitors should radiate directly even if the connecting wires are shrunk to zero length. That this is so is shown here by a direct derivation of capacitor radiation using an oscillating electric dipole radiator model for the capacitors as well as the alternative less widely known magnetic 'charge' current loop representation for an electric dipole [see for example "Electromagnetic Waves" by S.A.Schlekunoff, van Nostrand (1948)]. Implications for Electromagnetic Compliance (EMC) issues as well as novel antenna designs further motivate the purpose of this paper.Comment: 5 Pages with No figure

    Exploring the Way to Approach the Efficiency Limit of Perovskite Solar Cells by Drift-Diffusion Model

    Full text link
    Drift-diffusion model is an indispensable modeling tool to understand the carrier dynamics (transport, recombination, and collection) and simulate practical-efficiency of solar cells (SCs) through taking into account various carrier recombination losses existing in multilayered device structures. Exploring the way to predict and approach the SC efficiency limit by using the drift-diffusion model will enable us to gain more physical insights and design guidelines for emerging photovoltaics, particularly perovskite solar cells. Our work finds out that two procedures are the prerequisites for predicting and approaching the SC efficiency limit. Firstly, the intrinsic radiative recombination needs to be corrected after adopting optical designs which will significantly affect the open-circuit voltage at its Shockley-Queisser limit. Through considering a detailed balance between emission and absorption of semiconductor materials at the thermal equilibrium, and the Boltzmann statistics at the non-equilibrium, we offer a different approach to derive the accurate expression of intrinsic radiative recombination with the optical corrections for semiconductor materials. The new expression captures light trapping of the absorbed photons and angular restriction of the emitted photons simultaneously, which are ignored in the traditional Roosbroeck-Shockley expression. Secondly, the contact characteristics of the electrodes need to be carefully engineered to eliminate the charge accumulation and surface recombination at the electrodes. The selective contact or blocking layer incorporated nonselective contact that inhibits the surface recombination at the electrode is another important prerequisite. With the two procedures, the accurate prediction of efficiency limit and precise evaluation of efficiency degradation for perovskite solar cells are attainable by the drift-diffusion model.Comment: 32 pages, 11 figure

    From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea.

    Get PDF
    Plastic waste is a pervasive feature of marine environments, yet little is empirically known about the biological and physical processes that transport plastics through marine ecosystems. To address this need, we conducted in situ feeding studies of microplastic particles (10 to 600 μm in diameter) with the giant larvacean Bathochordaeus stygius. Larvaceans are abundant components of global zooplankton assemblages, regularly build mucus "houses" to filter particulate matter from the surrounding water, and later abandon these structures when clogged. By conducting in situ feeding experiments with remotely operated vehicles, we show that giant larvaceans are able to filter a range of microplastic particles from the water column, ingest, and then package microplastics into their fecal pellets. Microplastics also readily affix to their houses, which have been shown to sink quickly to the seafloor and deliver pulses of carbon to benthic ecosystems. Thus, giant larvaceans can contribute to the vertical flux of microplastics through the rapid sinking of fecal pellets and discarded houses. Larvaceans, and potentially other abundant pelagic filter feeders, may thus comprise a novel biological transport mechanism delivering microplastics from surface waters, through the water column, and to the seafloor. Our findings necessitate the development of tools and sampling methodologies to quantify concentrations and identify environmental microplastics throughout the water column

    A comprehensive study for the plasmonic thin-film solar cell with periodic structure

    Get PDF
    A comprehensive study of the plasmonic thin-film solar cell with the periodic strip structure is presented in this paper. The finite-difference frequency-domain method is employed to discretize the inhomogeneous wave function for modeling the solar cell. In particular, the hybrid absorbing boundary condition and the one-sided difference scheme are adopted. The parameter extraction methods for the zeroth-order reflectance and the absorbed power density are also discussed, which is important for testing and optimizing the solar cell design. For the numerical results, the physics of the absorption peaks of the amorphous silicon thin-film solar cell are explained by electromagnetic theory; these peaks correspond to the waveguide mode, Floquet mode, surface plasmon resonance, and the constructively interference between adjacent metal strips. The work is therefore important for the theoretical study and optimized design of the plasmonic thin-film solar cell. © 2010 Optical Society of America.published_or_final_versio

    The Van der Waals interaction of the hydrogen molecule - an exact local energy density functional

    Full text link
    We verify that the van der Waals interaction and hence all dispersion interactions for the hydrogen molecule given by: W"= -{A/R^6}-{B/R^8}-{C/R^10}- ..., in which R is the internuclear separation, are exactly soluble. The constants A=6.4990267..., B=124.3990835 ... and C=1135.2140398... (in Hartree units) first obtained approximately by Pauling and Beach (PB) [1] using a linear variational method, can be shown to be obtainable to any desired accuracy via our exact solution. In addition we shall show that a local energy density functional can be obtained, whose variational solution rederives the exact solution for this problem. This demonstrates explicitly that a static local density functional theory exists for this system. We conclude with remarks about generalising the method to other hydrogenic systems and also to helium.Comment: 11 pages, 13 figures and 28 reference

    Critical exponents of the degenerate Hubbard model

    Full text link
    We study the critical behaviour of the \SUN{} generalization of the one-dimensional Hubbard model with arbitrary degeneracy NN. Using the integrability of this model by Bethe Ansatz we are able to compute the spectrum of the low-lying excitations in a large but finite box for arbitrary values of the electron density and of the Coulomb interaction. This information is used to determine the asymptotic behaviour of correlation functions at zero temperature in the presence of external fields lifting the degeneracy. The critical exponents depend on the system parameters through a N×NN\times N dressed charge matrix implying the relevance of the interaction of charge- and spin-density waves.Comment: 18 page

    Electrokinetic behavior of two touching inhomogeneous biological cells and colloidal particles: Effects of multipolar interactions

    Get PDF
    We present a theory to investigate electro-kinetic behavior, namely, electrorotation and dielectrophoresis under alternating current (AC) applied fields for a pair of touching inhomogeneous colloidal particles and biological cells. These inhomogeneous particles are treated as graded ones with physically motivated model dielectric and conductivity profiles. The mutual polarization interaction between the particles yields a change in their respective dipole moments, and hence in the AC electrokinetic spectra. The multipolar interactions between polarized particles are accurately captured by the multiple images method. In the point-dipole limit, our theory reproduces the known results. We find that the multipolar interactions as well as the spatial fluctuations inside the particles can affect the AC electrokinetic spectra significantly.Comment: Revised version with minor changes: References added and discussion extende
    corecore