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Abstract: A comprehensive study of the plasmonic thin-film solar
cell with the periodic strip structure is presented in this paper. The
finite-difference frequency-domain method is employed to discretize the
inhomogeneous wave function for modeling the solar cell. Inparticular,
the hybrid absorbing boundary condition and the one-sided difference
scheme are adopted. The parameter extraction methods for the zeroth-order
reflectance and the absorbed power density are also discussed, which is
important for testing and optimizing the solar cell design.For the numerical
results, the physics of the absorption peaks of the amorphous silicon
thin-film solar cell are explained by electromagnetic theory; these peaks
correspond to the waveguide mode, Floquet mode, surface plasmon reso-
nance, and the constructively interference between adjacent metal strips.
The work is therefore important for the theoretical study and optimized
design of the plasmonic thin-film solar cell.
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Fig. 1: The schematic diagram of a solar cell structure.

1. Introduction

Solar cells (SCs) [1, 2], which can provide renewable and clean energy by converting sunlight
to electrical power, have attracted much attention in the past few years. Despite the growing
importance, we need to reduce the cost of the SCs and increasethe energy conversion efficiency
before they can successfully replace fossil fuel for electrical power generation.

A careful optical design of the device structure is crucial for optimizing the performance
particularly for thin film SCs due to the typically weak lightabsorption of the materials such
as amorphous silicon (A-Si) [3]. Figure 1 shows the schematic diagram of a solar cell structure
with the textured back reflector (BR) and the antireflection (AR) coatings. As a light-trapping
configuration, the textured BRs [4, 5, 6] have been proposed for extending the optical path
length. However, the configuration may suffer from the back surface recombination loss. More-
over, the textured AR coatings [7] have been employed to reduce the reflection of light at the top
surface of the SCs. But the AR coatings cannot offer the sufficient light concentration. There-
fore, better light trapping and concentration schemes are desirable for further improving the
external quantum efficiency of SCs. Surface plasmon resonances (SPRs) are collective oscilla-
tions of the free electrons that are confined to surfaces and interact strongly with light resulting
in a polariton. SPR usually occurs at the interface between adielectric with the positive dielec-
tric constantεd

r and a metal with the negative dielectric constantεm
r . Meanwhile, SPR, which

is the eigenstate of the Maxwell’s equations for the dielectric-metal structure, only exist when
Re(−εm

r ) > εd
r is satisfied [8][9]. To excite the SPR by light, a coupling technique providing

the wavevector mismatch is required. For SCs, the metallic periodic nanostructures and the sub-
wavelength scatterers have been used to excite the SPR [10, 11, 12, 13, 14, 15]. Some of the
unique features of the plasmonic thin-film SC are the broadband and wideangle absorption en-
hancements. Both theoretical and experimental results have demonstrated that the strong-peak
absorption enhancements appear at specific wavelengths. Asa result, the short-circuit current
or the open-circuit voltage is also increased.

In order to describe the propagation and scattering of sunlight within the SC and to optimize
the process, Maxwell’s equations have to be rigorously solved. Some of the well-adopted full-
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wave solvers for optical simulation are the finite-difference time-domain (FDTD) [16, 17, 18]
and the FDFD methods [19, 20]. Due to the fact that most optical materials are dispersive, the
recursive convolution (RC) method [21] or the piecewise linear recursive convolution (PLRC)
method [22] should be used for the FDTD method. For noble metals, such as Ag and Au, the
complex dielectric constants have to been described by a large number of summation terms in
Lorentz-Drude model [23]. Hence, these recursive convolution implementations will consume
a lot of CPU time. However, for the FDFD method, one can use an experimentally tabulated
dielectric constants of the dispersive materials directly. Furthermore, compared with the FDFD
method, the FDTD method is not easy to treat the periodic boundary conditions particularly
for the oblique incidence case [16, 24, 25]. In most places, unless a solar panel is mounted on
an expensive tracking system, most of the time light is incident on the array obliquely. Hence,
the ability of FDFD method to handle the case of oblique incidence is clearly an important
advantage over the FDTD method for modeling the SCs. In addition, the FDFD method can
use a variety of flexible difference techniques, such as one-sided difference scheme, to improve
the accuracy. But the FDTD method will suffer from instability problem if these techniques are
adopted [26].

For the FDFD method, most papers adopted the staggered grid,because it can satisfy the
divergence-free condition automatically. However, the averaged material model [19, 20, 27]
cannot accurately resolve the local field at the high-contrast interface between dielectric and
metal. Besides, few papers have modeled SCs with periodic structures by using the FDFD
method. Consequently, it is highly desirable to establish arigorous and efficient method for
modeling SCs, in particular, the periodically patterned structures.

In this paper, we use the FDFD method to discretize the inhomogeneous wave function for
modeling the plasmonic thin-film SC. In order to accurately treat the dielectric-metal inter-
face, the flexible one-sided difference scheme is introduced. While the perfectly matched layer
(PML) cannot work very well under periodic boundary condition [28], the hybrid absorbing
boundary condition (ABC) is proposed here to reduce the spurious numerical reflections from
the outmost boundary of the PML. Moreover, we propose the rigorous phase and attenuation
constants conditions of the SPR for general lossy materials. In addition, we will unveil the
origins of the absorption peaks of SC structures using electromagnetic theory.

2. Theoretical modeling

A two-dimensional (2-D) plasmonic thin-film silicon SC structure is shown in Fig. 2. Since the
s-polarized incident light cannot excite the SPR [9], we mainly consider the p-polarized light
with the electromagnetic components ofHz, Ex, andEy. The exp( j0ωt) time convention is used.
For the SCs, all the materials are non-magnetic (i.e.µr = 1).

2.1. Finite-difference equation

For the 2-D isotropic and inhomogeneousmedia with the complex dielectric constant ofεr(x,y),
the wave function of the total fieldHt

z is given by [29]

∂
∂x

(

1
εr(x,y)

∂Ht
z

∂x

)

+
∂
∂y

(

1
εr(x,y)

∂Ht
z

∂y

)

+ k2
0Ht

z = 0 (1)
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Fig. 2: The unit cell of the plasmonic thin-film SC. The four-layered structure includes indium
tin oxide (ITO), absorbing materials, Au (or Ag) electrodes, and substrate with thickness ofd1,
d2, d3, andd4, respectively. The distance between two adjacent strips isds and the periodicity
is P. The incident light propagates into the structure through the ITO. The PML and the Mur
absorbing boundary conditions are employed at the top and the bottom of the SC structure. The
periodic boundary conditions (PBC) at the left and right sides of the unit cell are imposed.

Fig. 3: The inhomogeneous material treatment. The squares denote the five difference nodes.
The center square is enclosed by the four rectangular regions with different dielectric constants.
Γmm′ are the contiguous edges of the rectangular regions (See Appendix A).

wherek0 is the wave number of free space. Figure 3 shows the general geometry for the inho-
mogeneous material treatment. Using the second-order central differences, we have

∂
∂x

(

1
εr(x,y)

∂Ht
z

∂x

)

=
1
∆x

(

Ht
z(i+1, j)−Ht

z(i, j)

εr(i+1/2, j)∆x

−Ht
z(i, j)−Ht

z(i−1, j)
εr(i−1/2, j)∆x

)

+ O(∆2
x)

(2)
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where∆x is the spatial step along thex direction. For the p-polarized incident light, the follow-
ing averaging techniques can be adopted for the dielectric constants, i.e.

1
εr(i+1/2, j)

≈ 1
2

(

1
εr1

+
1

εr4

)

(3)

1
εr(i−1/2, j)

≈ 1
2

(

1
εr2

+
1

εr3

)

(4)

where the subscript 1, 2, 3, and 4 denote the small rectangular regions as shown in Fig. 3.
Using the notations ofΦ1 = Ht

z(i, j −1), Φ2 = Ht
z(i−1, j), Φ3 = Ht

z(i, j), Φ4 = Ht
z(i + 1, j),

andΦ5 = Ht
z(i, j+1), the continuous inhomogeneous wave equation Eq. (1) can be discretized

into FDFD equation as
5

∑
m=1

cmΦm = 0 (5)

where

c1 =
1
2

(

1
εr1

+
1

εr2

)

· 1
∆2

y
(6)

c2 =
1
2

(

1
εr2

+
1

εr3

)

· 1
∆2

x
(7)

c4 =
1
2

(

1
εr4

+
1

εr1

)

· 1
∆2

x
(8)

c5 =
1
2

(

1
εr3

+
1

εr4

)

· 1
∆2

y
(9)

c3 = −1
2

(

1
εr1

+
1

εr2
+

1
εr3

+
1

εr4

)

·
(

1
∆2

x
+

1
∆2

y

)

+ k2
0 (10)

It should be noted that the FDFD form of the inhomogeneous wave equation can be converted
to that of the homogeneous wave equation if the four rectangular regions have the same dielec-
tric constant. For the p-polarized incident plane wave, it has been reported that the averaging
techniques of Eq. (3) and Eq. (4) are effective for the inhomogeneous material treatment [30].
Here, we show that the averaging techniques can also be rigorously derived by the integral form
of the wave equation and the boundary conditions (See Appendix A). SinceH inc

z is known (the
incident light) and the FDFD equation ofHt

z is expressed as Eq. (5), the FDFD equation for the
scattered-fieldHs

z can be derived by

Ht
z = H inc

z + Hs
z (11)

2.2. Boundary conditions

As shown in Fig. 2, the ABCs along they directions are used to avoid the spurious reflections
of waves at the top and bottom boundaries of computational domain. The complex-coordinate
PML [31, 32] is an efficient and accurate ABC which has the formof

∂ 2Hs
z

∂x2 +
1
sy

∂
∂y

(

1
sy

∂Hs
z

∂y

)

+ k2
0Hs

z = 0 (12)
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where

sy =







1− j0
σ(y)
ωε0

, within PML

1, other
(13)

whereε0 is the permittivity of free space, andω is the angular frequency of the incident light.
The polynomial variation of the conductivitiesσ is employed, i.e.

σ( j) =
C
∆y

(

j−1/2
L

)Q

, j = 1,2, . . . ,8 (14)

σ( j +1/2) =
C
∆y

(

j
L

)Q

, j = 0,1, . . . ,8 (15)

whereL is the layer number of the PML,Q is the order of the polynomial, andC is a constant.
For reducing the spurious numerical reflections, the optimized settings are set toL = 8,Q = 3.7,
andC = 0.02. The proper discretization form [33] for the coordinate-stretched term of Eq. (12)
is given by

1
sy

∂
∂y

(

1
sy

∂Hs
z

∂y

)

≈ 1
sy( j)∆y

[

Hs
z (i, j +1)−Hs

z(i, j)
sy( j +1/2)∆y

−

Hs
z (i, j)−Hs

z (i, j−1)

sy( j−1/2)∆y

] (16)

At the outermost boundary of the PML, the Mur ABC [34] replacing the traditional perfectly
electric conductor truncation condition is employed to further reduce the spurious numerical
reflections. Taking the top planey = 0 as an example, the second-order Mur ABC can be written
as

[

∂
∂y

− j0

(

k0 +
1

2k0

∂ 2

∂x2

)]

Hs
z

∣

∣

∣

∣

y=0
= 0 (17)

and its discretized form is given by

f1Hs
z (i, j)+ f2Hs

z (i−1, j)+ f3Hs
z (i+1, j)+ f4Hs

z (i, j +1) = 0 (18)

where

f1 = 2exp( j0k0∆y)−2k2
0∆2

x exp( j0k0∆y)−2

f2 = f3 = 1−exp( j0k0∆y)

f4 = 2k2
0∆2

x

(19)

Particularly, we introduce the exponential difference strategy [35] to improve accuracy.
Regarding the periodic structure, the periodic boundary conditions along thex directions

need to be implemented. Based on the Floquet theorem, we have

Hs
z (x + P,y) = Hs

z (x,y)exp(− j0k0cosθ ·P)

Hs
z (x,y) = Hs

z (x + P,y)exp( j0k0cosθ ·P)
(20)

whereP is the periodicity andθ is the incident angle with respect tox direction. Compared
with the FDFD method, the second equation of Eq. (20) is not easy to be treated by the FDTD
method, particularly for the oblique incidence case because one does not know the scattered-
field values at a future time in periodic device structures. It should be noted that the periodic
boundary conditions should also be implemented at the regions of the hybrid ABC.
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Although the FDFD form Eq. (5) can generally treat the dielectric-dielectric and dielectric-
metal interfaces, the accuracy will degrade at the interfaces. Thus the one-sided difference
scheme is used to rectify the problem. For the horizontal interface (y = yh) between the media
1 and the media 2, the boundary condition for the scattered magnetic field is

(

1
εr1

∂
∂y

Hs1
z − 1

εr2

∂
∂y

Hs2
z

)∣

∣

∣

∣

y=yh

=

(

1
εr2

∂
∂y

H inc
z − 1

εr1

∂
∂y

H inc
z

)∣

∣

∣

∣

y=yh

(21)

Using the high-order-accurate one-sided differences, we get

∂
∂y

Hs1
z

∣

∣

∣

∣

x=i∆x

≈ 1.5Hs1
z (i, j)−2Hs1

z (i, j−1)+0.5Hs1
z (i, j−2)

∆y

∂
∂y

Hs2
z

∣

∣

∣

∣

x=i∆x

≈ −1.5Hs2
z (i, j)+2Hs2

z (i, j +1)−0.5Hs2
z (i, j +2)

∆y

(22)

The one-sided difference scheme is flexible and can have higher-order accuracy. For the vertical
interfaces, one can also use the one-sided differences.

2.3. Parameter extraction

In this section, we will discuss the details to extract the important parameters including the
absorption power density and the zeroth-order reflectance and transmittance. By applying the
above FDFD equations and the boundary conditions to all freeN nodes in the solution region, a
sparse matrix equation is formed because only the nearest adjacent nodes affect the value ofHs

z
at each node. Hence, the scattered magnetic field can be solved by the iterative methods with the
memory and computational complexity ofO(N). After this, the total electric field components
are calculated by

Et
x(i, j +1/2)≈ 1

2

(

1
εr(i, j +1)

+
1

εr(i, j)

)

Ht
z(i, j +1)−Ht

z(i, j)
j0ωε0 ·∆y

(23)

Et
y(i+1/2, j)≈ 1

2

(

1
εr(i+1, j)

+
1

εr(i, j)

)

Ht
z(i+1, j)−Ht

z(i, j)

− j0ωε0 ·∆x
(24)

The electron-hole pair generation depends on the photon energy absorbed by the absorbing
material per unit time per unit area, i.e.

η =

∫

Sa
σa|E|2ds

∆Sa

=
−ωε0

∫

Sa
Im(εra) |E|2ds

∆Sa

(25)

whereη is the power density,Sa denotes the region of the absorbing material,∆Sa is the area of
Sa, andσa = −ωε0Im(εra) is the conductivity of the absorbing material.

For the SC with the periodic structure, the zeroth-order reflectance and transmittance are the
important parameters for optimizing the SC structures and comparing the theoretical results
to the experimental ones. Physically, the dips of the reflectance correspond to the absorption
peaks. The Floquet modes (space harmonics) for the two-dimensional periodic structure are
given by

Ψp = exp(− jUpx)exp(− jVpy) (26)

where

Up = k0cosθ +
2π p

P
, p = 0,±1,±2, . . . (27)
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Fig. 4: The zeroth-order reflectance and transmittance by the FDFD method and the rigorous
coupled-wave algorithm.

Vp =











√

k2
0−U2

p , k2
0 ≥U2

p

− j

∣

∣

∣

∣

√

k2
0−U2

p

∣

∣

∣

∣

, k2
0 < U2

p

(28)

According to the orthogonal properties of the Floquet modes, we get

Rp =

∣

∣

∣

1
P

∫ P
0 Hs

z (x,yr)exp( jk0 cosθx)dx
∣

∣

∣

2

A2 (29)

and

Tp =

∣

∣

∣

1
P

∫ P
0 Ht

z(x,yt)exp( jk0cosθx)dx
∣

∣

∣

2

A2 (30)

whereA is the amplitude of the incident light, andyr and yt are the virtual boundaries for
computing the zeroth-order reflectanceRp and the zeroth-order transmittanceTp, respectively.

As a testing structure, we consider the periodic dielectricstrip model in free space. The
incident plane wave is given by

H inc
z (x,y) = exp(− jk0 (xcosθ + ysinθ )) (31)

whereθ = 85◦ andk0 = 2π . The dielectric constant of each strip is taken asεr = 4− 0.1 j.
The periodicity isP = 0.6m, the thickness of each strip isd3 = 0.5m, and the distance between
the adjacent dielectric strips isds = 0.3m. The spatial steps are set to∆x = ∆y = 0.01m. The
zeroth-order reflectance and transmittance are calculatedby the FDFD method and the rigorous
coupled-wave algorithm [36]. As shown in Fig. 4, the two approaches agree with each other
very well.

3. Simulation results

We start with a simple semi-infinite structure of A-Si/Au which can allow us to intrusively study
SPRs. For the semi-infinite structure, the correspondingHz fields in the A-Si and Au layers can
be assumed as

Hz(x̃, ỹ) = exp
(

jkSi
y ỹ− jkxx̃

)

, kSi
y = β Si

y + jαSi
y , ỹ < 0 (32)
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Ex field at 735nm, at which the dips of the ˜y-
directed attenuation constants are achieved as
shown in Fig. 5.

Hz(x̃, ỹ) = exp
(

− jkAu
y ỹ− jkxx̃

)

, kAu
y = β Au

y + jαAu
y , ỹ > 0 (33)

wherek, β , andα are the propagation, phase, and attenuation constants, respectively. For the p-
polarized plane wave, the reflection coefficient for the upgoing wave in the A-Si layer reflected
by the Au layer is given by

R =
εAu

r kSi
y − εSi

r kAu
y

εAu
r kSi

y + εSi
r kAu

y
(34)

The poles of Eq. (34) are determined by

εAu
r kSi

y + εSi
r kAu

y = 0 (35)

Using the facts that
(

kSi
y

)2
= k2

0εSi
r − k2

x (36)

(

kAu
y

)2
= k2

0εAu
r − k2

x (37)

we can derive the ˜x-directed propagation constant is

kx = k0

(

εSi
r εAu

r

εSi
r + εAu

r

)1/2

, kx = βx + jαx (38)

The propagation constantkx is also the momentum of the SPR. It is well known that SPR will
exist if the condition Re(−εAu

r ) > εSi
r is satisfied. But the condition is based on the assump-

tion thatεSi
r andεAu

r are predominately real. For the real situation, the loss of them cannot be
ignored. As a result, the condition is not accurate.

Here we will re-study the problem through comprehensively taking into account the com-
plex dielectric constant and defining the attenuation and phase conditions for the formation of
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SPR. The ˜y-directed propagation constants in the A-Si and Au layers are the double-value func-
tions ofkx. Considering that the SPR is a surface wave decayed away fromthe dielectric-metal
interface ( ˜y = 0), we have

αSi
y < 0, αAu

y < 0 (39)

In other words, the surface plasmon poles should be on the proper Riemann sheets of bothkSi
y

andkAu
y , i.e. Im

(

kSi
y

)

< 0 and Im
(

kAu
y

)

< 0. As shown in Fig. 5, from solving for the root of
Eq. (35), the attenuation constant of the field at A-Si layer change sign when the incident wave-
length goes through 560nm. Meanwhile, the locations of the poles of Eq. (34) are changed from
the improper Riemann sheets to the proper Riemann sheets. According to the Drude model, the
metallic dielectric function is approximated as

εAu
r (ω) ≈ 1−

ω2
p

ω2 (40)

whereωp is the plasma frequency of Au. Hence, the SPRs exist at long wavelength range
where the metal is opaque. This also agrees with the fact thatthe SPRs exist when the incident
wavelength is larger than 560nm. Thus the eigenstates of theMaxwell’s equations for the semi-
infinite A-Si/Au structure are the SPRs if the conditions of Eq. (39) are satisfied. Besides the
attenuation constants conditions, the SPRs should satisfythe phase constants conditions also,
i.e.

β Si
y < 0, β Au

y < 0 (41)

The phase constants conditions agree with the oscillation property of the SPRs. Figure 6 shows
the contour plot of the eigenstate forEx field at 735nm, where the maximum phase constantβx

of the SPR is achieved by the resonance conditionεSi
r +εAu

r ≈ 0. It is interesting to note that the
field profile looks very symmetric becausekx becomes very large at 735nm and thuskSi

y in Eq.
(36) andkAu

y in Eq. (37) are comparable to each other. At the wavelength, the maximum ampli-
tudes of the attenuation constants (i.e. the minimum attenuation lengths along ˜y directions) are
achieved as well.

For the SC with periodic metal nanopatterns as shown in Fig. 2, the absorbing material is
A-Si and the substrate is glass (SiO2). The complex dielectric constants of the materials (Au,
A-Si, etc) are taken from [37, 38]. The geometric parametersof the device are set asd1 = 25nm,
d2 = 120nm,d3 = 40nm,d4 = 30nm,ds = 100nm, andP = 200nm. They-directed incident
field is the p-polarized plane wave with the amplitude of 1 andthe frequency spectrum from
400nm to 800nm. The spatial step is set to∆x = ∆y = 0.5nm. Fig. 7 shows the absorbed power
density of the A-Si layer. Using the planar Au layer, the non-strip (planar) structure is also
modeled. For the non-strip structure,d2 = 140nm is adopted for achieving the same A-Si area
while other parameters are unchanged.

The A-Si bulk material has insufficient absorption from 650nm to 800nm due to its lower
conductivity at the long wavelength region as shown in the inset of Fig. 7. For both strip and
non-strip structures, the absorptionη as described by Eq. (25) is significantly enhanced at the
long wavelength region as shown in Fig. 7. The enhancement isdue to the substantial increase
of |E|2. Moreover, the strip structure shows even stronger absorption due to the excited SPR
and the constructive interference between strips. In fact,the efficient absorption can enhance
the external quantum efficiency.

More importantly, our results can show the origins of the absorption peaks which are ex-
plained by electromagnetic theory. Along±y directions, we consider the structures as the mul-
tilayered medium. The waveguide modes can be approximatelyfound by computing the gen-
eralized reflection coefficient̃Ri,i+1 of the medium between the ith layer and the(i +1)th layer
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[29]

R̃i,i+1 =
Ri,i+1 + R̃i+1,i+2e−2 jki+1,y(di+1−di)

1+ Ri,i+1R̃i+1,i+2e−2 jki+1,y(di+1−di)
(42)

where(di+1 − di) is the thickness of the(i +1)th layer. Considering that the excitation isy-
directed plane-wave,ki+1,y = ki+1 = k0

√εr,i+1. The waveguide modes can be obtained from the
local minima of the generalized reflection coefficient as shown in Fig. 8. As shown in Fig. 7 and
Fig. 8, the waveguide modes contribute to all the absorptionpeaks (A and B) of the non-strip
structure. In this case, the interface between the A-Si and Au layers can be considered as a good
mirror for trapping the light in the non-strip structure. This is the reason why the absorption
enhancement still happens in the planar structure. However, for the non-strip structure, the SPR
cannot be excited due to the momentum mismatch. For the stripstructure, Fig. 9 showsHt

z
field distributions at the absorption peaks. There are two different multilayered media in the
strip structure as shown in Fig. 2. At the regions where the Austrips are present, the medium
is Air/ITO/A-Si/Au/SiO2/Air. In the other region, the medium is Air/ITO/A-Si/SiO2/Air. The
waveguide modes of the former medium contribute to the absorption peaks 1, 2, and 6 (See
Fig. 7). The absorption peaks 2 and 4 are mainly due to the waveguide modes of the medium
without the Au strip.

Since the SC has the periodic structure, the Floquet modes also enhance the absorption. The
Ht

z field distributions for the peaks 3 and 4 show the resonant states (Floquet modes) alongx
directions. The periodic boundaries (PBC in Fig. 2) behave like a magnetic wall or electric wall
for the peaks of 3 and 4 respectively. The concentrated field at the absorption layer is due to the
Floquet modes that can be observed clearly in Fig. 9(c) and Fig. 9(d).

The SPR is successfully excited by the sub-scatterer strip at the wavelength 745nm as shown
in Fig. 5 and Fig. 7. According to the mode conversion theory,the sub-wavelength strip can
excite the evanescent wave components, which may provide the momentum mismatch∆k with
the continuous spectrum up to 2π/d3. The field profile is shown in Fig. 9(e). Thex-directed
boundaries of the strips achieve better field concentrationthan they-directed boundaries. The
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(a) Peak 1: 455nm (b) Peak 2: 545nm

(c) Peak 3: 585nm (d) Peak 4: 705nm

(e) Peak 5: 745nm (f) Peak 6: 780nm

Fig. 9: TheHt
z field distribution for the periodic strip structure.

phenomenon agrees well with the semi-infinite model in whichthe momentum of the SPR is
approximately calculated by Eq. (35)-Eq. (38).

The interference pattern between the adjacent metal stripsis shown in Fig. 9(d), Fig. 9(e), and
Fig. 9(f). The surface waves decayed away from they-directed boundaries of the strips interfere
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with each other. The constructive interference leads to thebroadband absorption especially for
the red light and even extends to the infrared region. From 700nm to 800nm, the absorption
peaks of 4, 5, and 6 are not obvious due to the low conductivities of the A-Si. Thus, a good
broadband absorbing material with the larger conductivityis very important for improving the
absorption properties of SCs. It should be noted that besides Fig. 9(e), there are some concen-
trated fields at the dielectric-metal interfaces in Fig. 9(d) and Fig. 9(f). They are also SPRs. The
SPRs are weak because there are no obvious momentum dips as shown in Fig. 5.

4. Conclusion

Using the FDFD method, the rigorous and efficient model of thethin-film plasmonic SC with
the periodic strip has been developed. Compared with the PML, the hybrid ABC works bet-
ter especially for the periodic structure. Moreover, the material discontinuities are accurately
treated by the inhomogeneous wave equation and the one-sided difference scheme. We also
proposed the phase and attenuation constants conditions ofthe SPR for lossy material systems.

By using the semi-infinite dielectric-metal structure, ourresults show that SPRs will exist if
the vertical phase and attenuation constants are negative in both dielectric and metal layers. The
sub-wavelength scatterers can excite the evanescent waves, which provide the size-dependent
continuous spectrum components. Hence, the subwavelengthscatterers can excite the SPRs for
the broadband light enhancement.

Our results also show that the origins of the absorption peaks for the periodic strip SC struc-
ture can be explained by the waveguide mode, the Floquet mode, the SPR, or the constructive
interference between strips. By changing the geometric parameters, the locations of peaks can
be modified for optimizing the performance of solar cells.

A. Integral form of the wave equation

Using the Gauss’s law, the contour integral form for the waveequation is given by

∮

∂Sm

∂Ht
z

∂nm
dl + k2

m

∫∫

Sm

Ht
zds = 0 (A-1)

whereSm denotes the four small rectangles enclosing the center square point as shown in Fig.
3 and∂Ht

z/∂nm denotes the derivatives ofHt
z normal to the contours∂Sm. Applying the central

differences to Eq. (A-1) yields

k2
1

∆x∆y

4
Φ3 +

∆y

2∆x
(Φ4−Φ3)+

∆x

2∆y
(Φ1−Φ3) =

−
∫

Γ12

∂Φ
∂n1

dl −
∫

Γ14

∂Φ
∂n1

dl
(A-2)

k2
2

∆x∆y

4
Φ3 +

∆y

2∆x
(Φ2−Φ3)+

∆x

2∆y
(Φ1−Φ3) =

−
∫

Γ21

∂Φ
∂n2

dl −
∫

Γ23

∂Φ
∂n2

dl
(A-3)

k2
3

∆x∆y

4
Φ3 +

∆y

2∆x
(Φ2−Φ3)+

∆x

2∆y
(Φ5−Φ3) =

−
∫

Γ32

∂Φ
∂n3

dl −
∫

Γ34

∂Φ
∂n3

dl
(A-4)
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k2
4

∆x∆y

4
Φ3 +

∆y

2∆x
(Φ4−Φ3)+

∆x

2∆y
(Φ5−Φ3) =

−
∫

Γ43

∂Φ
∂n4

dl −
∫

Γ41

∂Φ
∂n4

dl
(A-5)

According to the boundary conditions at the interfaces
(

1
εr1

∂Φ(1)

∂n1
+

1
εr2

∂Φ(2)

∂n2

)∣

∣

∣

∣

∣

Γ12,Γ21

= 0 (A-6)

(

1
εr2

∂Φ(2)

∂n2
+

1
εr3

∂Φ(3)

∂n3

)∣

∣

∣

∣

∣

Γ23,Γ32

= 0 (A-7)

(

1
εr3

∂Φ(3)

∂n3
+

1
εr4

∂Φ(4)

∂n4

)∣

∣

∣

∣

∣

Γ34,Γ43

= 0 (A-8)

(

1
εr4

∂Φ(4)

∂n4
+

1
εr1

∂Φ(1)

∂n1

)∣

∣

∣

∣

∣

Γ41,Γ14

= 0 (A-9)

we get the FDFD form of the inhomogeneous wave function, which is the same as Eq. (5).
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