860 research outputs found

    A retrospective study of the prevalence of the canine degenerative myelopathy associated superoxide dismutase 1 mutation (SOD1: c. 118G> A) in a referral population of German Shepherd dogs from the UK

    Get PDF
    BACKGROUND: Canine degenerative myelopathy (CDM) is an adult onset, progressive neurodegenerative disease of the spinal cord. The disease was originally described in the German Shepherd dog (GSD), but it is now known to occur in many other dog breeds. A previous study has identified a mutation in the superoxide dismutase 1 gene (SOD1:c.118G > A) that is associated with susceptibility to CDM. In the present study, restriction fragment length polymorphism (RFLP) analysis was used to genotype GSD for SOD1:c.118G > A in order to estimate the prevalence of the mutation in a referral population of GSD in the UK. RESULTS: This study demonstrated that the RFLP assay, based on use of PCR and subsequent digestion with the Eco571 enzyme, provided a simple genotyping test for the SOD1:c.118G > A mutation. In a young GSD population (i.e. dogs less than 6 years of age, before clinical signs of the disease usually become apparent), 8 of 50 dogs were found to be homozygous and a further 19 were heterozygous for the mutation. In dogs over 8 years of age, 21 of 50 dogs admitted to a tertiary referral hospital with pelvic limb ataxia as a major clinical sign were homozygous for the mutation, compared to none of 50 dogs of similar age, but where no neurological disease was reported on referral. CONCLUSIONS: This data suggests that genotyping for the SOD1:c.118G > A mutation is clinically applicable and that the mutation has a high degree of penetrance. Genotyping might also be useful for screening the GSD population to avoid mating of two carriers, but since the allele frequency is relatively high in the UK population of GSD, care should be taken to avoid reduction in genetic diversity within the breed

    Microprobe Analysis of Element Distribution in Rabbit and Dog Erythrocytes as Examples of High and Low Potassium Cells

    Get PDF
    The concentrations of Na, Mg, P, S, Cl, K and Fe were determined by microprobe in near 100% hematocrit suspensions of rabbit and dog erythrocytes prepared by freezing and drying. These cells are representative, respectively, of high potassium, low sodium, and high sodium, low potassium cells. Water contents of the cells were the same, as were, approximately, the levels of Cl, S and Fe. Rabbit P was nearly double that of the dog. For the rabbit, the cell Na/K ratio was 0.21 and for the dog 15.4, illustrating the major diffusible electrolyte difference between these two types of cell. The rabbit erythrocytes showed an apparent negative immobile charge density of 95 meq/kg of cell water and the dog 56 meq/kg cell water, a distinct difference. Serum electrolytes in the two species are exactly comparable (Standard Tables). Ionic distribution in these cell types was treated by the Gibbs-Duhem equation representing two heterogeneous systems in thermodynamic equilibrium with the blood serum. Factors to be considered are: (1) the composition of the erythrocyte and its net immobile charge; (2) the physicochemical properties of the individual ions (charge, ionic radius, hydration energy, standard chemical potential); (3) the dielectric constant of the dispersion medium (in this case, water); and (4) the binding constants of the ions. The hypothesis of active transport (the sodium-potassium pump) is specifically rejected as an explanation of ionic differences

    Letter to the Editor by M.B. Engel and H.R. Catchpole Relating to: Can We See Living Structures in the Cell [by G.N. Ling, Scanning Microscopy Vol. 6, p. 405-450 (1992)] and Reply by G.N. Ling

    Get PDF
    Dear Editor, As workers in the field of ionic equilibrium in extracellular matrices and cells, and as contributors to this Journal of papers supporting an alternative explanation to that represented by the dominant schools of active transport (ionic pumps), we are surprised by the statement of Ling (1992, p. 449) which appears to limit published criticism of those schools to himself and A.S. Troshin. By an odd coincidence, our abstract (Catchpole et al., 1951) on the distribution of potassium and sodium through selective action of the cations with ground substance and water appeared simultaneously with that of Ling (1951): Tentative hypothesis for selective ionic accumulation in muscle cells . We have also published papers and monographs since that distant time. So much, at least, for longevity

    Microprobe Analysis of Element Distribution in Bovine Extracellular Matrices and Muscle

    Get PDF
    The concentrations of some essential elements, Na, K, P, S and Cl were determined by microprobe analysis in bovine extracellular matrices of cartilage, tendon and elastic tissue (ligamentum nuchae) and in muscle cells. The values for the different tissues were compared and related to the blood electrolyte concentrations. Among the connective tissues the highest Na and lowest Cl values were found for cartilage which bears a high negative charge. The lowest concentrations of these elements occurred in elastic tissue which is relatively non-polar. In the three extracellular matrices sodium levels exceeded potassium. In myofibers potassium was the major cation at 30 times the blood value and about 3 times the concentration of sodium. Chlorine values were around 0.4 that of blood. Sulfur and phosphorus are components of the tissue macromolecules. The negative charge on the extracellular matrices is a function of carboxyl and sulfate radicals. In the myofiber this property is largely attributable to carboxyl and phosphate groups. Differences in potassium-sodium distribution in cells and extracellular matrices are attributed partly to the microtrabecular lattice and to the ordered state of cell water. In general the element concentrations and selective distribution can be related to the chemical composition and organization of the tissue, the net immobile charge, the nature of the dispersion medium (water) and changes in its dielectric constant, and to the physico-chemical properties of the individual ions

    Point Sources from a Spitzer IRAC Survey of the Galactic Center

    Get PDF
    We have obtained Spitzer/IRAC observations of the central 2.0 x 1.4 degrees (~280 x 200 pc) of the Galaxy at 3.6-8.0 microns. A point source catalog of 1,065,565 objects is presented. The catalog includes magnitudes for the point sources at 3.6, 4.5, 5.8, and 8.0 microns, as well as JHK photometry from 2MASS. The point source catalog is confusion limited with average limits of 12.4, 12.1, 11.7, and 11.2 magnitudes for [3.6], [4.5], [5.8], and [8.0], respectively. We find that the confusion limits are spatially variable because of stellar surface density, background surface brightness level, and extinction variations across the survey region. The overall distribution of point source density with Galactic latitude and longitude is essentially constant, but structure does appear when sources of different magnitude ranges are selected. Bright stars show a steep decreasing gradient with Galactic latitude, and a slow decreasing gradient with Galactic longitude, with a peak at the position of the Galactic center. From IRAC color-magnitude and color-color diagrams, we conclude that most of the point sources in our catalog have IRAC magnitudes and colors characteristic of red giant and AGB stars.Comment: 44 pages, 13 figures, ApJS in pres

    The evolutionary state of Miras with changing pulsation periods

    Full text link
    Context: Miras are long-period variables thought to be in the asymptotic giant branch (AGB) phase of evolution. In about one percent of known Miras, the pulsation period is changing. It has been speculated that this changing period is the consequence of a recent thermal pulse in these stars. Aims: We aim to clarify the evolutionary state of these stars, and to determine in particular whether or not they are in the thermally-pulsing (TP-)AGB phase. Methods: One important piece of information that has been neglected so far when determining the evolutionary state is the presence of the radio-active s-process element technetium (Tc). We obtained high-resolution, high signal-to-noise-ratio optical spectra of a dozen prominent Mira variables with changing pulsation period to search for this indicator of TPs and dredge-up. We also use the spectra to measure lithium (Li) abundances. Furthermore, we establish the evolutionary states of our sample stars by means of their present-day periods and luminosities. Results: Among the twelve sample stars observed in this programme, five were found to show absorption lines of Tc. BH Cru is found to be a carbon-star, its period increase in the past decades possibly having stopped by now. We report a possible switch in the pulsation mode of T UMi from Mira-like to semi-regular variability in the past two years. R Nor, on the other hand, is probably a fairly massive AGB star, which could be true for all meandering Miras. Finally, we assign RU Vul to the metal-poor thick disk with properties very similar to the short-period, metal-poor Miras. Conclusions: We conclude that there is no clear correlation between period change class and Tc presence. The stars that are most likely to have experienced a recent TP are BH Cru and R Hya, although their rates of period change are quite different.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in A&
    corecore