5,661 research outputs found

    Making use of geometrical invariants in black hole collisions

    Full text link
    We consider curvature invariants in the context of black hole collision simulations. In particular, we propose a simple and elegant combination of the Weyl invariants I and J, the {\sl speciality index} S{\cal S}. In the context of black hole perturbations S\cal S provides a measure of the size of the distortions from an ideal Kerr black hole spacetime. Explicit calculations in well-known examples of axisymmetric black hole collisions demonstrate that this quantity may serve as a useful tool for predicting in which cases perturbative dynamics provide an accurate estimate of the radiation waveform and energy. This makes S{\cal S} particularly suited to studying the transition from nonlinear to linear dynamics and for invariant interpretation of numerical results.Comment: 4 pages, 3 eps figures, Revte

    Sparse spectral-tau method for the three-dimensional helically reduced wave equation on two-center domains

    Get PDF
    We describe a multidomain spectral-tau method for solving the three-dimensional helically reduced wave equation on the type of two-center domain that arises when modeling compact binary objects in astrophysical applications. A global two-center domain may arise as the union of Cartesian blocks, cylindrical shells, and inner and outer spherical shells. For each such subdomain, our key objective is to realize certain (differential and multiplication) physical-space operators as matrices acting on the corresponding set of modal coefficients. We achieve sparse banded realizations through the integration "preconditioning" of Coutsias, Hagstrom, Hesthaven, and Torres. Since ours is the first three-dimensional multidomain implementation of the technique, we focus on the issue of convergence for the global solver, here the alternating Schwarz method accelerated by GMRES. Our methods may prove relevant for numerical solution of other mixed-type or elliptic problems, and in particular for the generation of initial data in general relativity.Comment: 37 pages, 3 figures, 12 table

    The close limit from a null point of view: the advanced solution

    Get PDF
    We present a characteristic algorithm for computing the perturbation of a Schwarzschild spacetime by means of solving the Teukolsky equation. We implement the algorithm as a characteristic evolution code and apply it to compute the advanced solution to a black hole collision in the close approximation. The code successfully tracks the initial burst and quasinormal decay of a black hole perturbation through 10 orders of magnitude and tracks the final power law decay through an additional 6 orders of magnitude. Determination of the advanced solution, in which ingoing radiation is absorbed by the black hole but no outgoing radiation is emitted, is the first stage of a two stage approach to determining the retarded solution, which provides the close approximation waveform with the physically appropriate boundary condition of no ingoing radiation.Comment: Revised version, published in Phys. Rev. D, 34 pages, 13 figures, RevTe

    Accelerating dark energy models in bianchi Type-V space-time

    Full text link
    Some new exact solutions of Einstein's field equations in a spatially homogeneous and anisotropic Bianchi type-V space-time with minimally interaction of perfect fluid and dark energy components have been obtained. To prevail the deterministic solution we choose the scale factor a(t)=tneta(t) = \sqrt{t^{n}e^{t}}, which yields a time dependent deceleration parameter (DP), representing a model which generates a transition of the universe from the early decelerating phase to the recent accelerating phase. We find that for n1n \geq 1, the quintessence model is reproducible with present and expected future evolution of the universe. The other models (for n<1n < 1), we observe the phantom scenario. The quintessence as well as phantom models approach to isotropy at late time. For different values of nn, we can generate a class of physically viable DE models. The cosmic jerk parameter in our descended model is also found to be in good concordance with the recent data of astrophysical observations under appropriate condition. The physical and geometric properties of spatially homogeneous and anisotropic cosmological models are discussed.Comment: 12 pages, 6 figure

    Probing the QCD vacuum with an abelian chromomagnetic field: A study within an effective model

    Full text link
    We study the response of the QCD vacuum to an external abelian chromomagnetic field in the framework of a non local Nambu-Jona Lasinio model with the Polyakov loop. We use the Lattice results on the deconfinement temperature of the pure gauge theory to compute the same quantity in the presence of dynamical quarks. We find a linear relationship between the deconfinement temperature with quarks and the squared root of the applied field strength, gHgH, in qualitative (and to some extent also quantitative) agreement with existing Lattice calculations. On the other hand, we find a discrepancy on the approximate chiral symmetry restoration: while Lattice results suggest the deconfinement and the chiral restoration remain linked even at non-zero value of gHgH, our results are consistent with a scenario in which the two transitions are separated as gHgH is increased.Comment: 14 pages, 7 figures, RevTeX4. Published version, with enlarged abstract and minor changes in the main tex

    A perturbative solution for gravitational waves in quadratic gravity

    Full text link
    We find a gravitational wave solution to the linearized version of quadratic gravity by adding successive perturbations to the Einstein's linearized field equations. We show that only the Ricci squared quadratic invariant contributes to give a different solution of those found in Einstein's general relativity. The perturbative solution is written as a power series in the β\beta parameter, the coefficient of the Ricci squared term in the quadratic gravitational action. We also show that, for monochromatic waves of a given angular frequency ω\omega, the perturbative solution can be summed out to give an exact solution to linearized version of quadratic gravity, for 0<ω<c/β1/20<\omega<c/\mid\beta\mid^{1/2}. This result may lead to implications to the predictions for gravitational wave backgrounds of cosmological origin.Comment: 9 pages, to appear in CQ

    Maximum gravitational recoil

    Get PDF
    Recent calculations of gravitational radiation recoil generated during black-hole binary mergers have reopened the possibility that a merged binary can be ejected even from the nucleus of a massive host galaxy. Here we report the first systematic study of gravitational recoil of equal-mass binaries with equal, but anti-aligned, spins parallel to the orbital plane. Such an orientation of the spins is expected to maximize the recoil. We find that recoil velocity (which is perpendicular to the orbital plane) varies sinusoidally with the angle that the initial spin directions make with the initial linear momenta of each hole and scales up to a maximum of ~4000 km/s for maximally-rotating holes. Our results show that the amplitude of the recoil velocity can depend sensitively on spin orientations of the black holes prior to merger.Comment: 4 pages, 4 figs, revtex

    Universality of massive scalar field late-time tails in black-hole spacetimes

    Full text link
    The late-time tails of a massive scalar field in the spacetime of black holes are studied numerically. Previous analytical results for a Schwarzschild black hole are confirmed: The late-time behavior of the field as recorded by a static observer is given by ψ(t)t5/6sin[ω(t)×t]\psi(t)\sim t^{-5/6}\sin [\omega (t)\times t], where ω(t)\omega(t) depends weakly on time. This result is carried over to the case of a Kerr black hole. In particular, it is found that the power-law index of -5/6 depends on neither the multipole mode \ell nor on the spin rate of the black hole a/Ma/M. In all black hole spacetimes, massive scalar fields have the same late-time behavior irrespective of their initial data (i.e., angular distribution). Their late-time behavior is universal.Comment: 11 pages, 14 figures, published versio
    corecore