1,081 research outputs found

    A phonon laser in ultra-cold matter

    Full text link
    We show the possible excitation of a phonon laser instability in an ultra-cold atomic gas confined in a magneto-optical trap. Such an effect results from a negative Landau damping of the collective density perturbations in the gas, leading to the coherent emission of phonons. This laser instability can be driven by a blue-detuned laser superimposed to the usual red-detuning laser beams which usually provide the cooling mechanism. Threshold conditions, instability growth rates and saturation levels are derived. This work generalizes, on theoretical grounds, the recent results obtained with single ion phonon laser, to an ultra-cold atomic gas, where real phonons can be excited. Future phonon lasers could thus adequately be called phasers.Comment: 4 pages, submitted to PR

    New Quantum Limits in Plasmonic Devices

    Full text link
    Surface plasmon polaritons (SPPs) have recently been recognized as an important future technique for microelectronics. Such SPPs have been studied using classical theory. However, current state-of-the-art experiments are rapidly approaching nanoscales, and quantum effects can then become important. Here we study the properties of quantum SPPs at the interface between an electron quantum plasma and a dielectric material. It is shown that the effect of quantum broadening of the transition layer is most important. In particular, the damping of SPPs does not vanish even in the absence of collisional dissipation, thus posing a fundamental size limit for plasmonic devices. Consequences and applications of our results are pointed out.Comment: 5 pages, 2 figures, to appear in Europhysics Letter

    Effects of the gg-factor in semi-classical kinetic plasma theory

    Full text link
    A kinetic theory for spin plasmas is put forward, generalizing those of previous authors. In the model, the ordinary phase space is extended to include the spin degrees of freedom. Together with Maxwell's equations, the system is shown to be energy conserving. Analysing the linear properties, it is found that new types of wave-particle resonances are possible, that depend directly on the anomalous magnetic moment of the electron. As a result new wave modes, not present in the absence of spin, appear. The implications of our results are discussed.Comment: 4 pages, two figures, version to appear in Physical Review Letter

    Effect of Part Thickness and Build Angle on the Microstructure, Surface Roughness, and Mechanical Properties of Additively Manufactured IN-939

    Get PDF
    Powder bed fusion-laser beam of metals (PBF-LB/M) has attracted significant interest due to the possibility of producing dedicated design features like thin-walled structures, even though their mechanical response and microstructure are not well understood. Hence, thin-walled IN-939 structures of different thicknesses (0.5, 1 and 2\ua0mm) were manufactured at two build angles (90 and 45\ua0deg) by PBF-LB/M. A preferred 〈100〉 crystallographic orientation was found along the build direction in all cases. The crystallographic texture intensity and surface roughness increased as the part thickness decreased for 90\ua0deg and increased for 45\ua0deg build angle. Reduction in wall thickness resulted in a decrease in the tensile properties, e.g., YS decreases by up to 33 pct and UTS decreases by up to 30 pct in comparison with the bulk specimen which had YS of 1051 \ub1 11\ua0MPa and UTS of 1482 \ub1 9\ua0MPa. Obtained results indicate that the apparent difference in tensile properties is primarily due to the overestimation of the load-bearing area. Two methods to estimate the accurate tensile properties based on roughness compensation are presented, using of which the corrected tensile performance of the thin-walled specimens was comparable with a standard tensile specimen

    From extended phase space dynamics to fluid theory

    Full text link
    We derive a fluid theory for spin-1/2 particles starting from an extended kinetic model based on a spin-projected density matrix formalism. The evolution equation for the spin density is found to contain a pressure-like term. We give an example where this term is important by looking at a linear mode previously found in a spin kinetic model.Comment: 4 page

    Investigating psychometric properties and dimensional structure of an educational environment measure (DREEM) using Mokken scale analysis - A pragmatic approach

    Get PDF
    © 2018 The Author(s). Background: Questionnaires and surveys are used throughout medical education. Nevertheless, measuring psychological attributes such as perceptions of a phenomenon among individuals may be difficult. The aim of this paper is to introduce the basic principles of Mokken scale analysis (MSA) as a method for the analysis of questionnaire data and to empirically apply MSA to a real-data example. Methods: MSA provides a set of statistical tools for exploring the relationship between items and latent traits. MSA is a scaling method of item selection algorithms used to partition an array of items into scales. It employs various methods to probe the assumptions of two nonparametric item response theory models: the monotone homogeneity model and the double monotonicity model. The background and theoretical framework underlying MSA are outlined in the paper. MSA for polytomous items was applied to a real-life data example of 222 undergraduate students who had completed a 50-item self-administered inventory measuring the educational environment, the Dundee Ready Educational Measure (DREEM). Results: A pragmatic and parsimonious approach to exploring questionnaires and surveys from an item response theory (IRT) perspective is outlined. The use of MSA to explore the psychometric properties of the Swedish version of the DREEM failed to yield strong support for the scalability and dimensional structure of the instrument. Conclusions: MSA, a class of simple nonparametric IRT models - for which estimates can be easily obtained and whose fit to data is relatively easily investigated - was introduced, presented, and tested. Our real-data example suggests that the psychometric properties of DREEM are not adequately supported. Thus, the empirical application depicted a potential and feasible approach whereby MSA could be used as a valuable method for exploring the behavior of scaled items in response to varying levels of a latent trait in medical education research

    Spin and magnetization effects in plasmas

    Full text link
    We give a short review of a number of different models for treating magnetization effects in plasmas. In particular, the transition between kinetic models and fluid models is discussed. We also give examples of applications of such theories. Some future aspects are discussed.Comment: 18 pages, 1 figure. To appear in Plasma Physics and Controlled Fusion, Special Issue for the 37th ICPP, Santiago, Chil

    Plasma waves driven by gravitational waves in an expanding universe

    Full text link
    In a Friedmann-Robertson-Walker (FRW) cosmological model with zero spatial curvature, we consider the interaction of the gravitational waves with the plasma in the presence of a weak magnetic field. Using the relativistic hydromagnetic equations it is verified that large amplitude magnetosonic waves are excited, assuming that both, the gravitational field and the weak magnetic field do not break the homogeneity and isotropy of the considered FRW spacetime.Comment: 14 page

    Quantum Vacuum Experiments Using High Intensity Lasers

    Full text link
    The quantum vacuum constitutes a fascinating medium of study, in particular since near-future laser facilities will be able to probe the nonlinear nature of this vacuum. There has been a large number of proposed tests of the low-energy, high intensity regime of quantum electrodynamics (QED) where the nonlinear aspects of the electromagnetic vacuum comes into play, and we will here give a short description of some of these. Such studies can shed light, not only on the validity of QED, but also on certain aspects of nonperturbative effects, and thus also give insights for quantum field theories in general.Comment: 9 pages, 8 figur
    • 

    corecore