1,305 research outputs found
Kriegsgefangene im Ersten Weltkrieg im Münsterland am Beispiel der Arbeitskommandos der Bodenverbesserungsgesellschaften Hohesfeld Gemen-Weseke und Wexter Mark Nienborg
Die Arbeit recherchiert das Schicksal der vor allem russischen Kriegsgefangenen, die seit 1915 im Kreis Borken in mehreren Außenlagern des Münsteraner Stammlagers Haus Spital gefangen gehalten wurden. Sie beschreibt nicht nur, wie der Alltag der Kriegsgefangenen aussah, sondern überlegt vor allem, ob es sich bei der Arbeit, die die Gefangenen teils in der Landwirtschaft, teils bei der Trockenlegung von Mooren leisten mussten, um Zwangsarbeit handelt
New Gamma-Ray Contributions to Supersymmetric Dark Matter Annihilation
We compute the electromagnetic radiative corrections to all leading
annihilation processes which may occur in the Galactic dark matter halo, for
dark matter in the framework of supersymmetric extensions of the Standard Model
(MSSM and mSUGRA), and present the results of scans over the parameter space
that is consistent with present observational bounds on the dark matter density
of the Universe. Although these processes have previously been considered in
some special cases by various authors, our new general analysis shows novel
interesting results with large corrections that may be of importance, e.g., for
searches at the soon to be launched GLAST gamma-ray space telescope. In
particular, it is pointed out that regions of parameter space where there is a
near degeneracy between the dark matter neutralino and the tau sleptons,
radiative corrections may boost the gamma-ray yield by up to three or four
orders of magnitude, even for neutralino masses considerably below the TeV
scale, and will enhance the very characteristic signature of dark matter
annihilations, namely a sharp step at the mass of the dark matter particle.
Since this is a particularly interesting region for more constrained mSUGRA
models of supersymmetry, we use an extensive scan over this parameter space to
verify the significance of our findings. We also re-visit the direct
annihilation of neutralinos into photons and point out that, for a considerable
part of the parameter space, internal bremsstrahlung is more important for
indirect dark matter searches than line signals.Comment: Replaced Fig. 2c which by mistake displayed the same spectrum as Fig.
  2d; the radiative corrections reported here are now implemented in DarkSUSY
  which is available at http://www.physto.se/~edsjo/darksusy
Bringing Order to Special Cases of Klee's Measure Problem
Klee's Measure Problem (KMP) asks for the volume of the union of n
axis-aligned boxes in d-space. Omitting logarithmic factors, the best algorithm
has runtime O*(n^{d/2}) [Overmars,Yap'91]. There are faster algorithms known
for several special cases: Cube-KMP (where all boxes are cubes), Unitcube-KMP
(where all boxes are cubes of equal side length), Hypervolume (where all boxes
share a vertex), and k-Grounded (where the projection onto the first k
dimensions is a Hypervolume instance).
  In this paper we bring some order to these special cases by providing
reductions among them. In addition to the trivial inclusions, we establish
Hypervolume as the easiest of these special cases, and show that the runtimes
of Unitcube-KMP and Cube-KMP are polynomially related. More importantly, we
show that any algorithm for one of the special cases with runtime T(n,d)
implies an algorithm for the general case with runtime T(n,2d), yielding the
first non-trivial relation between KMP and its special cases. This allows to
transfer W[1]-hardness of KMP to all special cases, proving that no n^{o(d)}
algorithm exists for any of the special cases under reasonable complexity
theoretic assumptions. Furthermore, assuming that there is no improved
algorithm for the general case of KMP (no algorithm with runtime O(n^{d/2 -
eps})) this reduction shows that there is no algorithm with runtime
O(n^{floor(d/2)/2 - eps}) for any of the special cases. Under the same
assumption we show a tight lower bound for a recent algorithm for 2-Grounded
[Yildiz,Suri'12].Comment: 17 page
Eine neue In-vivo-Technik zur dreidimensionalen Analyse der Translation der Femurkondylen und der Menisken unter dem Einfluß antagonistischer Muskelkräfte
The aim of our study was to develop a 3-D MR-based technique for the analysis of meniscal and femoral translations during flexion of the knee, and under the influence of antagonistic muscle forces in healthy subjects. In an open MR system, 5 knees were examined at 30 degrees and 90 degrees flexion using a T1-weighted 3-D gradient echo sequence. A force of 30 Newtons, first in the extending and then in the flexing direction, was applied to the distal lower leg. After three-dimensional reconstruction, the minimal distances between the centre of the tibial plateau and the posterior edge of the menisci and femoral condyles were determined. At 30 degrees flexion, the minimum distance for the meniscus was larger medially than laterally (23.2 +/- 1.8 mm vs. 16.2 +/- 3.3 mm), and this also applied to the condyles (25.1 +/- 1.5 vs. 19.0 +/- 3.0 mm). During flexion to 90 degrees, a posterior translation of 0.5 +/- 0.2 mm was observed for the lateral, and of 3.4 +/- 1.2 mm for the medial, meniscus. The condyles demonstrated a different posterior translation (lateral 2.2 +/- 0.56 mm; medial 1.8 +/- 1.9 mm). No obvious differences were found between extension and flexion muscle activity for the different positions of the knee. In the present study, a new 3-D technique is presented for the analysis of the femoral and meniscal translation at various positions of the knee, and under muscle activity. The results suggest different translation for the menisci and condyles
Agarose hydrogel microcompartments for imaging sleep- and wake-like behavior and nervous system development in Caenorhabditis elegans larvae.
Precise Calculation of the Relic Density of Kaluza-Klein Dark Matter in Universal Extra Dimensions
We revisit the calculation of the relic density of the lightest Kaluza-Klein
particle (LKP) in the model of Universal Extra Dimensions. The Kaluza-Klein
(KK) particle spectrum at level one is rather degenerate, and various
coannihilation processes may be relevant. We extend the calculation of
hep-ph/0206071 to include coannihilation processes with all level one KK
particles. In our computation we consider a most general KK particle spectrum,
without any simplifying assumptions. In particular, we do not assume a
completely degenerate KK spectrum and instead retain the dependence on each
individual KK mass. As an application of our results, we calculate the
Kaluza-Klein relic density in the Minimal UED model, turning on coannihilations
with all level one KK particles. We then go beyond the minimal model and
discuss the size of the coannihilation effects separately for each class of
level 1 KK particles. Our results provide the basis for consistent relic
density computations in arbitrarily general models with Universal Extra
Dimenions.Comment: 44 pages, 19 figures, typeset in JHEP styl
On the Importance of Electroweak Corrections for Majorana Dark Matter Indirect Detection
Recent analyses have shown that the inclusion of electroweak corrections can
alter significantly the energy spectra of Standard Model particles originated
from dark matter annihilations. We investigate the important situation where
the radiation of electroweak gauge bosons has a substantial influence: a
Majorana dark matter particle annihilating into two light fermions. This
process is in p-wave and hence suppressed by the small value of the relative
velocity of the annihilating particles. The inclusion of electroweak radiation
eludes this suppression and opens up a potentially sizeable s-wave contribution
to the annihilation cross section. We study this effect in detail and explore
its impact on the fluxes of stable particles resulting from the dark matter
annihilations, which are relevant for dark matter indirect searches. We also
discuss the effective field theory approach, pointing out that the opening of
the s-wave is missed at the level of dimension-six operators and only encoded
by higher orders.Comment: 25 pages, 6 figures. Minor corrections to match version published in
  JCA
Limits on the Time Evolution of Space Dimensions from Newton's Constant
Limits are imposed upon the possible rate of change of extra spatial
dimensions in a decrumpling model Universe with time variable spatial
dimensions (TVSD) by considering the time variation of (1+3)-dimensional
Newton's constant. Previous studies on the time variation of (1+3)-dimensional
Newton's constant in TVSD theory had not been included the effects of the
volume of the extra dimensions and the effects of the surface area of the unit
sphere in D-space dimensions. Our main result is that the absolute value of the
present rate of change of spatial dimensions to be less than about
10^{-14}yr^{-1}. Our results would appear to provide a prima facie case for
ruling the TVSD model out. We show that based on observational bounds on the
present-day variation of Newton's constant, one would have to conclude that the
spatial dimension of the Universe when the Universe was at the Planck scale to
be less than or equal to 3.09. If the dimension of space when the Universe was
at the Planck scale is constrained to be fractional and very close to 3, then
the whole edifice of TVSD model loses credibility.Comment: 22 pages, accepted for publication in Int.J.Mod.Phys.
Direct Constraints on Minimal Supersymmetry from Fermi-LAT Observations of the Dwarf Galaxy Segue 1
The dwarf galaxy Segue 1 is one of the most promising targets for the
indirect detection of dark matter. Here we examine what constraints 9 months of
Fermi-LAT gamma-ray observations of Segue 1 place upon the Constrained Minimal
Supersymmetric Standard Model (CMSSM), with the lightest neutralino as the dark
matter particle. We use nested sampling to explore the CMSSM parameter space,
simultaneously fitting other relevant constraints from accelerator bounds, the
relic density, electroweak precision observables, the anomalous magnetic moment
of the muon and B-physics. We include spectral and spatial fits to the Fermi
observations, a full treatment of the instrumental response and its related
uncertainty, and detailed background models. We also perform an extrapolation
to 5 years of observations, assuming no signal is observed from Segue 1 in that
time. Results marginally disfavour models with low neutralino masses and high
annihilation cross-sections. Virtually all of these models are however already
disfavoured by existing experimental or relic density constraints.Comment: 22 pages, 5 figures; added extra scans with extreme halo parameters,
  expanded introduction and discussion in response to referee's comment
Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer
Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH
- …
