380 research outputs found

    Cosmological Evolution of Brane World Moduli

    Get PDF
    We study cosmological consequences of non-constant brane world moduli in five dimensional brane world models with bulk scalars and two boundary branes. We focus on the case where the brane tension is an exponential function of the bulk scalar field, Ubexp(αϕ)U_b \propto \exp{(\alpha \phi)}. In the limit α0\alpha \to 0, the model reduces to the two-brane model of Randall-Sundrum, whereas larger values of α\alpha allow for a less warped bulk geometry. Using the moduli space approximation, we derive the four-dimensional low-energy effective action from a supergravity-inspired five-dimensional theory. For arbitrary values of α\alpha, the resulting theory has the form of a bi-scalar-tensor theory. We show that, in order to be consistent with local gravitational observations, α\alpha has to be small (less than 10210^{-2}) and the separation of the branes must be large. We study the cosmological evolution of the interbrane distance and the bulk scalar field for different matter contents on each branes. Our findings indicate that attractor solutions exist which drive the moduli fields towards values consistent with observations. The efficiency of the attractor mechanism crucially depends on the matter content on each branes. In the five-dimensional description, the attractors correspond to the motion of the negative tension brane towards a bulk singularity, which signals the eventual breakdown of the four-dimensional description and the necessity of a better understanding of the bulk singularity.Comment: 18 pages, 10 figures, typos and factor of 2 corrected, version to appear in Physical Review

    Bulk scalar field in DGP braneworld cosmology

    Full text link
    We investigated the effects of bulk scalar field in the braneworld cosmological scenario. The Friedmann equations and acceleration condition in presence of the bulk scalar field for a zero tension brane and cosmological constant are studied. In DGP model the effective Einstein equation on the brane is obtained with bulk scalar field. The rescaled bulk scalar field on the brane in the DGP model behaves as an effective four dimensional field, thus standard type cosmology is recovered. In present study of the DGP model, the late-time accelerating phase of the universe can be explained .Comment: 10 pages, to appear in JCA

    Neutron Interferometry constrains dark energy chameleon fields

    Full text link
    We present phase shift measurements for neutron matter waves in vacuum and in low pressure Helium using a method originally developed for neutron scattering length measurements in neutron interferometry. We search for phase shifts associated with a coupling to scalar fields. We set stringent limits for a scalar chameleon field, a prominent quintessence dark energy candidate. We find that the coupling constant β\beta is less than 1.9 ×107\times10^7~for n=1n=1 at 95\% confidence level, where nn is an input parameter of the self--interaction of the chameleon field φ\varphi inversely proportional to φn\varphi^n.Comment: 7 pages, 4 figure

    Tests of chameleon gravity

    Get PDF
    Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f(R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments

    Slow roll inflation in the presence of a dark energy coupling

    Get PDF
    In models of coupled dark energy, in which a dark energy scalar field couples to other matter components, it is natural to expect a coupling to the inflaton as well. We explore the consequences of such a coupling in the context of single-field slow-roll inflation. Assuming an exponential potential for the quintessence field we show that the coupling to the inflaton causes the quintessence field to be attracted toward the minimum of the effective potential. If the coupling is large enough, the field is heavy and is located at the minimum. We show how this affects the expansion rate and the slow-roll of the inflaton field, and therefore the primordial perturbations generated during inflation. We further show that the coupling has an important impact on the processes of reheating and preheating

    On extra forces from large extra dimensions

    Full text link
    The motion of a classical test particle moving on a 4-dimensional brane embedded in an nn-dimensional bulk is studied in which the brane is allowed to fluctuate along the extra dimensions. It is shown that these fluctuations produce three different forces acting on the particle, all stemming from the effects of extra dimensions. Interpretations are then offered to describe the origin of these forces and a relationship between the 4 and nn-dimensional mass of the particle is obtained by introducing charges associated with large extra dimensions.Comment: 9 pages, no figuer

    Bulk scalar field in the braneworld can mimic the 4D inflaton dynamics

    Full text link
    Based on the recently proposed scenario of inflation driven by a bulk scalar field in the braneworld of the Randall-Sundrum (RS) type, we investigate the dynamics of a bulk scalar field on the inflating braneworld. We derive the late time behavior of the bulk scalar field by analyzing the property of the retarded Green function. We find that the late time behavior is basically dominated by a single (or a pair of) pole(s) in the Green function irrespective of the initial condition and of the signature of m2=V(ϕ)m^{2}=V''(\phi), where V(ϕ)V(\phi) is the potential of the bulk scalar field. Including the lowest order back-reaction to the geometry, this late time behavior can be well approximated by an effective 4-dimensional scalar field with meff2=m2/2m^2_{\mathrm{eff}}=m^2/2. The mapping to the 4-dimensional effective theory is given by a simple scaling of the potential with a redefinition of the field. Our result supports the picture that the scenario of inflation driven by a bulk scalar field works in a quite similar way to that in the standard 4-dimensional cosmology.Comment: 12 pages, no figures, final version to be published in PR

    Robinson-Trautman spacetimes in higher dimensions

    Get PDF
    As an extension of the Robinson-Trautman solutions of D=4 general relativity, we investigate higher dimensional spacetimes which admit a hypersurface orthogonal, non-shearing and expanding geodesic null congruence. Einstein's field equations with an arbitrary cosmological constant and possibly an aligned pure radiation are fully integrated, so that the complete family is presented in closed explicit form. As a distinctive feature of higher dimensions, the transverse spatial part of the general line element must be a Riemannian Einstein space, but it is otherwise arbitrary. On the other hand, the remaining part of the metric is - perhaps surprisingly - not so rich as in the standard D=4 case, and the corresponding Weyl tensor is necessarily of algebraic type D. While the general family contains (generalized) static Schwarzschild-Kottler-Tangherlini black holes and extensions of the Vaidya metric, there is no analogue of important solutions such as the C-metric.Comment: 11 page

    On the kinks and dynamical phase transitions of alpha-helix protein chains

    Full text link
    Heuristic insights into a physical picture of Davydov's solitonic model of the one-dimensional protein chain are presented supporting the idea of a non-equilibrium competition between the Davydov phase and a complementary, dynamical- `ferroelectric' phase along the chainComment: small latex file with possible glue problems, just go on !, no figures, small corrections with respect to the published text, follow-up work to cond-mat/9304034 [PRE 47 (June 1993) R3818

    Metric Expansion from Microscopic Dynamics in an Inhomogeneous Universe

    Full text link
    Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending on location. Microscopic dynamics implies that H is over much smaller lengths than pocket universes to be understood as a local space reproduction rate. We illustrate this via discussing that even exponential inflation in TeV-gravity is slow on the relevant time scale. In our on small scales inhomogeneous cosmos, a reproduction rate H depends on position. We therefore discuss Einstein-Straus vacuoles and a Lindquist-Wheeler like lattice to connect the local rate properly with the scaling of an expanding cosmos. Consistency allows H to locally depend on Weyl curvature similar to vacuum polarization. We derive a proportionality constant known from Kepler's third law and discuss the implications for the finiteness of the cosmological constant.Comment: 23 pages, no figure
    corecore