221 research outputs found

    Projective Ring Line of an Arbitrary Single Qudit

    Full text link
    As a continuation of our previous work (arXiv:0708.4333) an algebraic geometrical study of a single dd-dimensional qudit is made, with dd being {\it any} positive integer. The study is based on an intricate relation between the symplectic module of the generalized Pauli group of the qudit and the fine structure of the projective line over the (modular) ring \bZ_{d}. Explicit formulae are given for both the number of generalized Pauli operators commuting with a given one and the number of points of the projective line containing the corresponding vector of \bZ^{2}_{d}. We find, remarkably, that a perp-set is not a set-theoretic union of the corresponding points of the associated projective line unless dd is a product of distinct primes. The operators are also seen to be structured into disjoint `layers' according to the degree of their representing vectors. A brief comparison with some multiple-qudit cases is made

    The Projective Line Over the Finite Quotient Ring GF(2)[xx]/<x3−x>< x^{3} - x> and Quantum Entanglement I. Theoretical Background

    Full text link
    The paper deals with the projective line over the finite factor ring R_♣≡R\_{\clubsuit} \equiv GF(2)[xx]/. The line is endowed with 18 points, spanning the neighbourhoods of three pairwise distant points. As R_♣R\_{\clubsuit} is not a local ring, the neighbour (or parallel) relation is not an equivalence relation so that the sets of neighbour points to two distant points overlap. There are nine neighbour points to any point of the line, forming three disjoint families under the reduction modulo either of two maximal ideals of the ring. Two of the families contain four points each and they swap their roles when switching from one ideal to the other; the points of the one family merge with (the image of) the point in question, while the points of the other family go in pairs into the remaining two points of the associated ordinary projective line of order two. The single point of the remaining family is sent to the reference point under both the mappings and its existence stems from a non-trivial character of the Jacobson radical, J_♣{\cal J}\_{\clubsuit}, of the ring. The factor ring R~_♣≡R_♣/J_♣\widetilde{R}\_{\clubsuit} \equiv R\_{\clubsuit}/ {\cal J}\_{\clubsuit} is isomorphic to GF(2) ⊗\otimes GF(2). The projective line over R~_♣\widetilde{R}\_{\clubsuit} features nine points, each of them being surrounded by four neighbour and the same number of distant points, and any two distant points share two neighbours. These remarkable ring geometries are surmised to be of relevance for modelling entangled qubit states, to be discussed in detail in Part II of the paper.Comment: 8 pages, 2 figure

    Projective Ring Line Encompassing Two-Qubits

    Full text link
    The projective line over the (non-commutative) ring of two-by-two matrices with coefficients in GF(2) is found to fully accommodate the algebra of 15 operators - generalized Pauli matrices - characterizing two-qubit systems. The relevant sub-configuration consists of 15 points each of which is either simultaneously distant or simultaneously neighbor to (any) two given distant points of the line. The operators can be identified with the points in such a one-to-one manner that their commutation relations are exactly reproduced by the underlying geometry of the points, with the ring geometrical notions of neighbor/distant answering, respectively, to the operational ones of commuting/non-commuting. This remarkable configuration can be viewed in two principally different ways accounting, respectively, for the basic 9+6 and 10+5 factorizations of the algebra of the observables. First, as a disjoint union of the projective line over GF(2) x GF(2) (the "Mermin" part) and two lines over GF(4) passing through the two selected points, the latter omitted. Second, as the generalized quadrangle of order two, with its ovoids and/or spreads standing for (maximum) sets of five mutually non-commuting operators and/or groups of five maximally commuting subsets of three operators each. These findings open up rather unexpected vistas for an algebraic geometrical modelling of finite-dimensional quantum systems and give their numerous applications a wholly new perspective.Comment: 8 pages, three tables; Version 2 - a few typos and one discrepancy corrected; Version 3: substantial extension of the paper - two-qubits are generalized quadrangles of order two; Version 4: self-dual picture completed; Version 5: intriguing triality found -- three kinds of geometric hyperplanes within GQ and three distinguished subsets of Pauli operator

    Modelle und Algorithmen fĂŒr mobile Datenobjekte und Umgebungen

    Full text link
    Im ersten Teil dieser Arbeit werden Anforderungen an die interne ReprĂ€sentation der Bewegungen mobiler Objekte beschrieben und eine Modellierung eines Rahmenwerks vorgestellt, das diverse ReprĂ€sentationskonzepte fĂŒr Bewegungen integriert, um auch verschieden charakterisierte Bewegungen realistisch darstellen zu können; hierfĂŒr wurde eine umfassende, effiziente und verlĂ€ssliche Anfragebearbeitung, die auf verschiedensten BewegungsreprĂ€sentationen operieren kann, konzipiert. Im zweiten Teil dieser Arbeit wird die speichereffiziente Verarbeitung von geometrischen Daten betrachtet, wie sie in mobilen Umgebungen, in denen Datenverarbeitung von ressourcenbeschrĂ€nkten Kleinstrechnern durchzufĂŒhren ist, von Nutzen sein kann. Konkret werden speicher- und laufzeiteffiziente Algorithmen zum Berechnen von Ausgleichsgeraden, die fĂŒr die Aggregation von geometrischen und zeitvarianten Daten relevant sind, sowie fĂŒr die Berechnung der Maximamengen und -schichten von Punktmengen, die fĂŒr die prioritĂ€tsgesteuerte Datenselektion und -gruppierung eingesetzt werden können, prĂ€sentiert

    Projective Ring Line of a Specific Qudit

    Full text link
    A very particular connection between the commutation relations of the elements of the generalized Pauli group of a dd-dimensional qudit, dd being a product of distinct primes, and the structure of the projective line over the (modular) ring \bZ_{d} is established, where the integer exponents of the generating shift (XX) and clock (ZZ) operators are associated with submodules of \bZ^{2}_{d}. Under this correspondence, the set of operators commuting with a given one -- a perp-set -- represents a \bZ_{d}-submodule of \bZ^{2}_{d}. A crucial novel feature here is that the operators are also represented by {\it non}-admissible pairs of \bZ^{2}_{d}. This additional degree of freedom makes it possible to view any perp-set as a {\it set-theoretic} union of the corresponding points of the associated projective line

    Qudits of composite dimension, mutually unbiased bases and projective ring geometry

    Full text link
    The d2d^2 Pauli operators attached to a composite qudit in dimension dd may be mapped to the vectors of the symplectic module Zd2\mathcal{Z}_d^{2} (Zd\mathcal{Z}_d the modular ring). As a result, perpendicular vectors correspond to commuting operators, a free cyclic submodule to a maximal commuting set, and disjoint such sets to mutually unbiased bases. For dimensions d=6, 10, 15, 12d=6,~10,~15,~12, and 18, the fine structure and the incidence between maximal commuting sets is found to reproduce the projective line over the rings Z6\mathcal{Z}_{6}, Z10\mathcal{Z}_{10}, Z15\mathcal{Z}_{15}, Z6×F4\mathcal{Z}_6 \times \mathbf{F}_4 and Z6×Z3\mathcal{Z}_6 \times \mathcal{Z}_3, respectively.Comment: 10 pages (Fast Track communication). Journal of Physics A Mathematical and Theoretical (2008) accepte

    Multi-Line Geometry of Qubit-Qutrit and Higher-Order Pauli Operators

    Full text link
    The commutation relations of the generalized Pauli operators of a qubit-qutrit system are discussed in the newly established graph-theoretic and finite-geometrical settings. The dual of the Pauli graph of this system is found to be isomorphic to the projective line over the product ring Z2xZ3. A "peculiar" feature in comparison with two-qubits is that two distinct points/operators can be joined by more than one line. The multi-line property is shown to be also present in the graphs/geometries characterizing two-qutrit and three-qubit Pauli operators' space and surmised to be exhibited by any other higher-level quantum system.Comment: 8 pages, 6 figures. International Journal of Theoretical Physics (2007) accept\'

    On Invariant Notions of Segre Varieties in Binary Projective Spaces

    Full text link
    Invariant notions of a class of Segre varieties \Segrem(2) of PG(2^m - 1, 2) that are direct products of mm copies of PG(1, 2), mm being any positive integer, are established and studied. We first demonstrate that there exists a hyperbolic quadric that contains \Segrem(2) and is invariant under its projective stabiliser group \Stab{m}{2}. By embedding PG(2^m - 1, 2) into \PG(2^m - 1, 4), a basis of the latter space is constructed that is invariant under \Stab{m}{2} as well. Such a basis can be split into two subsets whose spans are either real or complex-conjugate subspaces according as mm is even or odd. In the latter case, these spans can, in addition, be viewed as indicator sets of a \Stab{m}{2}-invariant geometric spread of lines of PG(2^m - 1, 2). This spread is also related with a \Stab{m}{2}-invariant non-singular Hermitian variety. The case m=3m=3 is examined in detail to illustrate the theory. Here, the lines of the invariant spread are found to fall into four distinct orbits under \Stab{3}{2}, while the points of PG(7, 2) form five orbits.Comment: 18 pages, 1 figure; v2 - version accepted in Designs, Codes and Cryptograph

    Performance of prototype BTeV silicon pixel detectors in a high energy pion beam

    Get PDF
    The silicon pixel vertex detector is a key element of the BTeV spectrometer. Sensors bump-bonded to prototype front-end devices were tested in a high energy pion beam at Fermilab. The spatial resolution and occupancies as a function of the pion incident angle were measured for various sensor-readout combinations. The data are compared with predictions from our Monte Carlo simulation and very good agreement is found.Comment: 24 pages, 20 figure
    • 

    corecore