39 research outputs found

    New Constraints on the Spin of the Black Hole Cygnus X-1 and the Physical Properties of its Accretion Disk Corona

    Get PDF
    We present a new analysis of NuSTAR and Suzaku observations of the black hole Cygnus X-1 in the intermediate state. The analysis uses kerrC, a new model for analyzing spectral and spectropolarimetric X-ray observations of black holes. kerrC builds on a large library of simulated black holes in X-ray binaries. The model accounts for the X-ray emission from a geometrically thin, optically thick accretion disk, the propagation of the X-rays through the curved black hole spacetime, the reflection off the accretion disk, and the Comptonization of photons in coronae of different 3-D shapes and physical properties before and after the reflection. We present the results from using kerrC for the analysis of archival NuSTAR and Suzaku observations taken on May 27-28, 2015. The best wedge-shaped corona gives a better fit than the cone-shaped corona. Although we included cone-shaped coronae in the funnel regions above and below the black hole to resemble to some degree the common assumption of a compact lamppost corona hovering above and/or below the black hole, the fit chooses a very large version of this corona that makes it possible to Comptonize a sufficiently large fraction of the accretion disk photons to explain the observed power law emission. The analysis indicates a dimensionless black hole spin parameter a between 0.86 and 0.92. The kerrC model provides new insights about the radial distribution of the energy flux of returning and coronal emission irradiating the accretion disk. kerrC furthermore predicts small polarization fractions around 1% in the 2-8 keV energy range of the recently launched Imaging X-ray Polarimetry Explorer

    New Constraints on the Spin of the Black Hole Cygnus X-1 and the Physical Properties of its Accretion Disk Corona

    Get PDF
    We present a new analysis of NuSTAR and Suzaku observations of the black hole Cygnus X-1 in the intermediate state. The analysis is performed using kerrC, a new model for analyzing spectral and spectropolarimetric X-ray observations of black holes. kerrC builds on a large library of simulated black holes in X-ray binaries. The model accounts for the X-ray emission from a geometrically thin, optically thick accretion disk, the propagation of the X-rays through the curved black hole spacetime, the reflection off the accretion disk, and the Comptonization of photons in coronae of different 3D shapes and physical properties before and after the reflection. We present the results from using kerrC for the analysis of archival NuSTAR and Suzaku observations taken on 2015 May 27-28. The best wedge-shaped corona gives a better fit than the cone-shaped corona. Although we included cone-shaped coronae in the funnel regions above and below the black hole to resemble to some degree the common assumption of a compact lamppost corona hovering above and/or below the black hole, the fit chooses a very large version of this corona that makes it possible to Comptonize a sufficiently large fraction of the accretion disk photons to explain the observed power-law emission. The analysis indicates a black hole spin parameter a (-1 ≀ a ≀ 1) between 0.861 and 0.921. The kerrC model provides new insights into the radial distribution of the energy flux of returning and coronal emission irradiating the accretion disk. kerrC furthermore predicts small polarization fractions around 1% in the 2-8 keV energy range of the recently launched Imaging X-ray Polarimetry Explorer. © 2022. The Author(s). Published by the American Astronomical Society

    Observations of a GX 301-2 Apastron Flare with the X-Calibur Hard X-Ray Polarimeter Supported by NICER, the Swift XRT and BAT, and Fermi GBM

    No full text
    The accretion-powered X-ray pulsar GX 301-2 was observed with the balloon-borne X-Calibur hard X-ray polarimeter during late December 2018, with contiguous observations by the NICER X-ray telescope, the Swift X-ray Telescope and Burst Alert Telescope, and the Fermi Gamma-ray Burst Monitor spanning several months. The observations detected the pulsar in a rare apastron flaring state coinciding with a significant spin-up of the pulsar discovered with the Fermi GBM. The X-Calibur, NICER, and Swift observations reveal a pulse profile strongly dominated by one main peak, and the NICER and Swift data show strong variation of the profile from pulse to pulse. The X-Calibur observations constrain for the first time the linear polarization of the 15-35 keV emission from a highly magnetized accreting neutron star, indicating a polarization degree of (27+38-27)% (90% confidence limit) averaged over all pulse phases. We discuss the spin-up and the X-ray spectral and polarimetric results in the context of theoretical predictions. We conclude with a discussion of the scientific potential of future observations of highly magnetized neutron stars with the more sensitive follow-up mission XL-Calibur

    Discovery of a gamma-ray black widow pulsar by GPU-accelerated Einstein@Home

    Get PDF
    We report the discovery of 1.97 ms period gamma-ray pulsations from the 75 minute orbital-period binary pulsar now named PSR J1653−0158. The associated Fermi Large Area Telescope gamma-ray source 4FGL J1653.6−0158 has long been expected to harbor a binary millisecond pulsar. Despite the pulsar-like gamma-ray spectrum and candidate optical/X-ray associations—whose periodic brightness modulations suggested an orbit—no radio pulsations had been found in many searches. The pulsar was discovered by directly searching the gamma-ray data using the GPU-accelerated Einstein@Home distributed volunteer computing system. The multidimensional parameter space was bounded by positional and orbital constraints obtained from the optical counterpart. More sensitive analyses of archival and new radio data using knowledge of the pulsar timing solution yield very stringent upper limits on radio emission. Any radio emission is thus either exceptionally weak, or eclipsed for a large fraction of the time. The pulsar has one of the three lowest inferred surface magnetic-field strengths of any known pulsar with B surf ≈ 4 × 107 G. The resulting mass function, combined with models of the companion star's optical light curve and spectra, suggests a pulsar mass gsim2 M ⊙. The companion is lightweight with mass ~0.01 M ⊙, and the orbital period is the shortest known for any rotation-powered binary pulsar. This discovery demonstrates the Fermi Large Area Telescope's potential to discover extreme pulsars that would otherwise remain undetected

    The first X-ray polarimetric observation of the black hole binary LMC X-1

    Full text link
    We report on an X-ray polarimetric observation of the high-mass X-ray binary LMC X-1 in the high/soft state, obtained by the Imaging X-ray Polarimetry Explorer (IXPE) in October 2022. The measured polarization is below the minimum detectable polarization of 1.1 per cent (at the 99 per cent confidence level). Simultaneously, the source was observed with the NICER, NuSTAR and SRG/ART-XC instruments, which enabled spectral decomposition into a dominant thermal component and a Comptonized one. The low 2-8 keV polarization of the source did not allow for strong constraints on the black-hole spin and inclination of the accretion disc. However, if the orbital inclination of about 36 degrees is assumed, then the upper limit is consistent with predictions for pure thermal emission from geometrically thin and optically thick discs. Assuming the polarization degree of the Comptonization component to be 0, 4, or 10 per cent, and oriented perpendicular to the polarization of the disc emission (in turn assumed to be perpendicular to the large scale ionization cone orientation detected in the optical band), an upper limit to the polarization of the disc emission of 1.0, 0.9 or 0.9 per cent, respectively, is found (at the 99 per cent confidence level).Comment: 12 pages, 9 figures, 4 tables. Accepted for publication in MNRA

    XIPE: the x-ray imaging polarimetry explorer

    Get PDF
    XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden
    corecore