157 research outputs found

    Gastric LTi cells promote lymphoid follicle formation but are limited by IRAK-M and do not alter microbial growth.

    Get PDF
    Lymphoid tissue inducer (LTi) cells are activated by accessory cell IL-23, and promote lymphoid tissue genesis and antibacterial peptide production by the mucosal epithelium. We investigated the role of LTi cells in the gastric mucosa in the context of microbial infection. Mice deficient in IRAK-M, a negative regulator of TLR signaling, were investigated for increased LTi cell activity, and antibody mediated LTi cell depletion was used to analyze LTi cell dependent antimicrobial activity. H. pylori infected IRAK-M deficient mice developed increased gastric IL-17 and lymphoid follicles compared to wild type mice. LTi cells were present in naive and infected mice, with increased numbers in IRAK-M deficient mice by two weeks. Helicobacter and Candida infection of LTi cell depleted rag1(-/-) mice demonstrated LTi-dependent increases in calprotectin but not RegIII proteins. However, pathogen and commensal microbiota populations remained unchanged in the presence or absence of LTi cell function. These data demonstrate LTi cells are present in the stomach and promote lymphoid follicle formation in response to infection, but are limited by IRAK-M expression. Additionally, LTi cell mediated antimicrobial peptide production at the gastric epithelium is less efficacious at protecting against microbial pathogens than has been reported for other tissues

    N-[4-Cyano-3-(trifluoro­meth­yl)phen­yl]-2-eth­oxy­benzamide

    Get PDF
    In the title compound, C17H13F3N2O2, the two aromatic rings are essentially coplanar, forming a dihedral angle of 2.78 (12)°. The non-H atoms of the eth­oxy group are coplanar with the attached ring [maximum deviation = 0.271 (3) Å]. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯N and C—H⋯F hydrogen bonds

    N-[4-Cyano-3-(trifluoro­meth­yl)phen­yl]-2-meth­oxy­benzamide

    Get PDF
    In the title compound, C16H11F3N2O2, the carboxamide group connecting the two aromatic rings is in a syn-periplanar configuration; the mol­ecule is non-planar; the dihedral angle between the two aromatic rings is 13.95 (18)°. Intra­molecular N—H⋯O and C—H⋯O hydrogen bonds occur. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds

    Molprint 2D-Based Identification and Synthesis of Novel Chromene Based Small Molecules that Target Pla2: Validation through Chemo-And Bioinformatics Approaches

    Get PDF
    Phospholipase A2 (PLA2) is known to regulate inflammation and hence it is considered as a validated drug-target by medicinal chemists. In this report, we have identified and considered a highly ranked ligand from the ZINC-drug-like compounds database that targets PLA2 via the MOLPRINT-2D based chemoinformatics drug-design approach. The computationally predicted lead molecule was found to contain a core moiety of a chromene ring, which is well known for its varied biological properties. Here, a novel and efficient retro-synthetic protocol for the synthesis of highly substituted chromene libraries was made. A one-pot synthesis of chromene was carried out using different aromatic primary alcohols, malononitrile and 4-hydroxy coumarin in the presence of a mild oxidant mixture called T3P®–DMSO, followed by a Suzuki coupling reaction to obtain the lead molecules. All of the tested compounds of the chromene series displayed inhibition of the venom PLA2 in the range of 12 to 68 μM. Among the tested compounds, 2-amino-4-(2′-methyl-[1,1′-biphenyl]-4-yl)-5-oxo-4,5-dihydropyrano[3,2-c]chromene-3-carbonitrile (7b) showed maximum inhibitory efficacy against venom PLA2 with an IC50 value of 12.5 μM. Furthermore, the designed PLA2 ligands bound to the active site of venom PLA2, whose binding affinity was comparable to nimesulide, indicating that the chromene moiety containing ligands could be novel lead-structures that serve as anti-inflammatory agents

    Linear and nonlinear rheology of wormlike micelles

    Get PDF
    Several surfactant molecules self-assemble in solution to form long, cylindrical, flexible wormlike micelles. These micelles can be entangled with each other leading to viscoelastic phases. The rheological properties of such phases are very interesting and have been the subject of a large number of experimental and theoretical studies in recent years. We shall report on our recent work on the macrorheology, microrheology and nonlinear flow behaviour of dilute aqueous solutions of a surfactant CTAT (Cetyltrimethylammonium Tosilate). This system forms elongated micelles and exhibits strong viscoelasticity at low concentrations (\sim 0.9 wt%) without the addition of electrolytes. Microrheology measurements of G(ω)G(\omega) have been done using diffusing wave spectroscopy which will be compared with the conventional frequency sweep measurements done using a cone and plate rheometer. The second part of the paper deals with the nonlinear rheology where the measured shear stress σ\sigma is a nonmonotonic function of the shear rate γ˙\dot{\gamma}. In stress-controlled experiments, the shear stress shows a plateau for γ˙\dot{\gamma} larger than some critical strain rate, similar to the earlier reports on CPyCl/NaSal system. Cates et al have proposed that the plateau is a signature of mechanical instability in the form of shear bands. We have carried out extensive experiments under controlled strain rate conditions, to study the time-dependence of shear stress. The measured time series of shear stress has been analysed in terms of correlation integrals and Lyapunov exponents to show unambiguously that the behaviour is typical of low dimensional dynamical systems.Comment: 15 pages, 10 eps figure

    Not Available

    No full text
    Not AvailableSeveral species of both beneficial and harmful insects are associated with sunflower (Helianthus annuus L.). In sunflower ecosystem, 48 species of natural enemies are recorded comprising 7 parasitoids, 24 insect predators, 9 spiders and 8 predatory birds. Majority of the insect predators belong to Coleoptera, Hemiptera, Mantodea, Orthoptera, Odonata and Neuroptera whereas hymenopterans comprised both predators and parasitoids. Among the 48 species of natural enemies recorded in the sunflower ecosystem, the predominant species are Trichogramma chilonis Ishii (on eggs of Helicoverpa armigera), Charops obtusus Morley (on Spilarctia obliqua Walker), Campoletis chlorideae Uchida, Rhogas percurrens Lyle (on H. armigera larvae) and Cotesia flavipes (Cameron) (on Spodoptera litura larvae). Among predators, coccinellids, Cheilomenes sexmaculata (F.), Brumoides suturalis (Fab.), Chilocorus nigritas (F.), Coccinella septempunctata L. and Scymnus sp. keep a good check on eggs and early stage larvae of Lepidoptera and sucking pests. In addition, Chrysoperla (carnea-group), Eocanthecona furcellata (Wolff), Rhynocoris kumarii Ambrose and Livingstone, Geocoris tricolor F. and Anthocoris sp., mantids, Eumantissa sp., Ceriagrion coromandelianum (F.), Ischnura sp., Dolichopus sp., Therevia sp., microbial agents and predatory birds play a vital role in the suppression of insect pests in sunflower. Though the activity of major predators like coccinellids and spiders was noticed in all the cropping seasons, maximum population was found during September and January, coinciding with the maximum population of insect pests.Not Availabl

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl
    corecore