98 research outputs found

    Overview of the Quench Heater Performance for MQXF, the Nb3Sn Low-β Quadrupole for the High Luminosity LHC

    Get PDF
    In the framework of the high-luminosity upgrade of the Large Hadron Collider, the U.S. LARP collaboration and CERN are jointly developing a 150 mm aperture Nb Sn quadrupole for the LHC interaction regions. Due to the large stored energy density and the low copper stabilizer section, the quench protection of these magnets is particularly challenging, relying on a combination of quench heaters attached to the coil surface and coupling loss induced quench (CLIQ) units electrically connected to the coils. This paper summarizes the performance of the quench heater strips in different configurations relevant to machine operation. The analysis is focused on the inner layer quench heaters, where several heater strips failed during powering tests. Failure modes are discussed in order to address the technology issues and provide guidance for future tests.

    First Cold Powering Test of REBCO Roebel Wound Coil for the EuCARD2 Future Magnet Development Project

    Get PDF
    EuCARD-2 is a project partly supported by FP7-European Commission aiming at exploring accelerator magnet technology for 20 T dipole operating field. The EuCARD-2 collaboration is liaising with similar programs for high field magnets in the USA and Japan. EuCARD-2 focuses, through the work-package 10 'Future magnets,' on the development of a 10 kA-class superconducting, high current density cable suitable for accelerator magnets, for a 5 T stand-alone dipole of 40 mm bore and about 1 m length. After standalone testing, the magnet will possibly be inserted in a large bore background dipole, to be tested at a peak field up to 18 T. This paper starts by reporting on a few of the highlight simulations that demonstrate the progress made in predicting: dynamic current distribution and influence on field quality, complex quench propagation between tapes, and minimum quench energy in the multitape cable. The multiphysics output importantly helps predicting quench signals and guides the development of the novel early detection systems. Knowing current position within individual tapes of each cable we present stress distribution throughout the coils. We report on the development of the mechanical component and assembly processes selected for Feather-M2 the 5 T EuCARD2 magnet. We describe the CERN variable temperature flowing helium cold gas test system. We describe the parallel integration of the FPGA early quench detection system, using pickup coils and temperature sensors, alongside the standard CERN magnet quench detection system using voltage taps. Finally we report on the first cold tests of the REBCO 10 kA class Roebel subscale coil named Feather-M0

    Performance review of the joints for the ITER poloidal field coils

    Get PDF
    For large scale magnets wound with cable-in-conduit conductors, the safe operation of the joints is of paramount importance to guarantee adequate reliability and stability margin of the whole magnet. For this reason, during the R&D activities undertaken for the development of the ITER magnet system, several experimental campaigns were launched to study the AC and DC performance of the joint and limit the risk of thermal runaways at the joints during the tokamak operation. The joint electrical resistance must be limited below specified values to avoid excessive heating generated by the transport current. Moreover, in presence of time-varying fields, different types of losses arise at the joints, which can be associated to their superconducting and resistive parts. The relative importance of these losses depends on the joint manufacturing solution. The aim of this investigation is to analyze the performance at different working conditions of the joints for the connection of the conductors of the poloidal field (PF) coils of the ITER magnet system. This work presents, for the first time, a wide review of the test campaign performed from 2016 to 2021 on the PF joint samples during the three manufacturing phases, namely pre-qualification, qualification and production. The values of electrical resistances and losses under sinusoidal field variations are reported in the paper at different operating conditions, thus building a useful database to assess the joint performances during the machine operation. The data here collected show the impact of the manufacturing techniques on the joint performances and, furthermore, represent a useful tool for the validation of numerical and analytical models of joints

    Mechanical and Electrical Modeling of Strands in Two ITER CS Cable Designs

    No full text
    Following the test of the first Central Solenoid (CS) conductor short samples for the International Thermonuclear Experimental Reactor (ITER) in the SULTAN facility, Iter Organization (IO) decided to manufacture and test two alternate samples using four different cable designs. These samples, while using the same Nb3_{3}Sn strand, were meant to assess the influence of various cable design parameters on the conductor performance and behavior under mechanical cycling. In particular, the second of these samples, CSIO2, aimed at comparing designs with modified cabling twist pitches sequences. This sample has been tested, and the two legs exhibited very different behaviors. To help understand what could lead to such a difference, these two cables were mechanically modeled using the MULTIFIL code, and the resulting strain map was used as an input into the CEA electrical code CARMEN. This article presents the main data extracted from the mechanical simulation and its use into the electrical modeling of individual strands inside the CICC

    Quench Modeling in High-field Nb3_3Sn Accelerator Magnets

    Get PDF
    The development of high-field magnets is on-going in the framework of the LHC luminosity upgrade. The resulting peak field, in the range of 12 T to 13 T, requires the use Nb3_{3}Sn as superconductor. Due to the high stored energy density (compact winding for cost reduction) and the low stabilizer fraction (to achieve the desired margins), quench protection becomes a challenging problem. Accurate simulation of quench transientsin these magnets is hence crucial to the design choices, the definition of priority R&D; and to prove that the magnets are fit for operation. In this paper we focus on the modelling of quench initiation and propagation, we describe approaches that are suitable for magnet simulation, and we compare numerical results with available experimental data

    Acoustic emission during quench training of superconducting accelerator magnets

    No full text
    Acoustic emission (AE) sensing is a viable tool for superconducting magnet diagnostics. Using in-house developed cryogenic amplified piezoelectric sensors, we conducted AE studies during quench training of the US LARP’s high-field quadrupole HQ02 and the LBNL’s high-field dipole HD3. For both magnets, AE bursts were observed, with spike amplitude and frequency increasing toward the quench current during current up-ramps. In the HQ02, the AE onset upon current ramping is distinct and exhibits a clear memory of the previously-reached quench current (Kaiser effect). On the other hand, in the HD3 magnet the AE amplitude begins to increase well before the previously-reached quench current (felicity effect), suggesting an ongoing progressive mechanical motion in the coils. A clear difference in the AE signature exists between the untrained and trained mechanical states in HD3. Time intervals between the AE signals detected at the opposite ends of HD3 coils were processed using a combination of narrow-band pass filtering; threshold crossing and correlation algorithms, and the spatial distributions of AE sources and the mechanical energy release were calculated. Both distributions appear to be consistent with the quench location distribution. Energy statistics of the AE spikes exhibits a power-law scaling typical for the self-organized critical state
    • …
    corecore