67 research outputs found

    Pathophysiology, risk, diagnosis, and management of venous thrombosis in space: where are we now?

    Get PDF
    The recent incidental discovery of an asymptomatic venous thrombosis (VT) in the internal jugular vein of an astronaut on the International Space Station prompted a necessary, immediate response from the space medicine community. The European Space Agency formed a topical team to review the pathophysiology, risk and clinical presentation of venous thrombosis and the evaluation of its prevention, diagnosis, mitigation, and management strategies in spaceflight. In this article, we discuss the findings of the ESA VT Topical Team over its 2-year term, report the key gaps as we see them in the above areas which are hindering understanding VT in space. We provide research recommendations in a stepwise manner that build upon existing resources, and highlight the initial steps required to enable further evaluation of this newly identified pertinent medical risk

    The ESA-NASA 'CHOICE' Study: Winterover at Concordia Station, Interior Antarctica, as an Analog for Spaceflight-Associated Immune Dysregu1ation

    Get PDF
    For ground-based space physiological research, the choice of analog must carefully match the system of interest. Antarctica winter-over at the European Concordia Station is potentially a ground-analog for spaceflight-associated immune dysregulation (SAID). Concordia missions consist of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation, disrupted circadian rhythms and international crews. The ESA-NASA CHOICE study assess innate and adaptive immunity, viral reactivataion and stress factors during Concordia winter-over deployment. To date, not all samples have been analyzed. Here, only data will be preliminary presented for those parameters where sample/data analysis is completed (i.e., Leukocyte subsets, T cell function, and intracellular/secreted cytokine profiles.

    Immune System Dysregulation and Latent Herpesvirus Reactivation During Winterover at Concordia Station, Dome C, Antarctica

    Get PDF
    Immune system dysregulation occurs during spaceflight and consists of altered peripheral leukocyte distribution, reductions in immunocyte function and altered cytokine production profiles. Causes may include stress, confinement, isolation, and disrupted circadian rhythms. All of these factors may be replicated to some degree in terrestrial environments. NASA is currently evaluating the potential for a ground-based analog for immune dysregulation, which would have utility for mechanistic investigations and countermeasures evaluation. For ground-based space physiology research, the choice of terrestrial analog must carefully match the system of interest. Antarctica winter-over, consisting of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation and disrupted circadian rhythms, is potentially a good ground-analog for spaceflight-associated immune dysregulation. Of all Antarctica bases, the French-Italian Concordia Station, may be the most appropriate to replicate spaceflight/exploration conditions. Concordia is an interior base located in harsh environmental conditions, and has been constructed to house small, international crews in a station-environment similar to what should be experienced by deep space astronauts. The ESA-NASA CHOICE study assessed innate and adaptive immunity, viral reactivation and stress factors during Concordia winterover deployment. The study was conducted over two winterover missions in 2009 and 2010. Final study data from NASA participation in these missions will be presented

    Biodosimetry of radiation-induced effects on DNA damage and cell cycle.

    No full text
    Molecular biological markers of radiation response are thought to be of potential use to monitor the progress of radiation therapy and also to predict at an early stage the outcome of a radiotherapeutical treatment. They might also be a tool to monitor the populations potentially exposed after a radiological accident or a "dirty bomb" incident but also to monitor astronauts during a spaceflight during which they are submitted to cosmic radiations. The bone marrow and the blood are the most radiation sensitive tissues of the human body. Therefore, the specific study of the radiation effects on mononuclear cells is of particular importance to find radiation-induced biological markers. The study of radiation biomarkers includes DNA mutation, chromosome aberrations, apoptosis as well as protein, gene expression by the array technologies and cell cycle after propidium iodide staining. However, additional studies are needed to validate candidate biomarkers (molecular and/or proteic) for applied biological dosimetry applications and that could provide early and rapid information after exposure to radiation. In human mononuclear cells, we studied the effects of X- and gamma rays at low doses (from 0.015625, 0.03125, 0.0625, 0.125 to 0.25 Gy) to high doses (0.25, 0.5, 1, 2, 4, 6, 10, 15 and 20 Gy) on DNA damage and cell cycle. DNA damage was monitored by the 8-oxyDNA assay and the apoptosis by cell cycle analysis after Propidium Iodide staining and size reduction. The results show that X or gamma radiations induced a dose-dependent increase of DNA damage in mononuclear cells in comparison with the control samples. Moreover, cell cycle and the size reduction showed a higher number of cells in the sub-G1 phase (caracterising the apoptotic cells) in irradiated cells in comparison with the control. However, the pattern of the induction of the radiation-induced effects is different in function of the protocol applied (DNA damage, the cell cycle and the size reduction). This can be explained by the different radiosensitivities of the subpopulations amongst mononuclear cells and also the variation in intrinsic radiation sensitivities between individuals. This work is supported by a Belspo contract (BL/52/C43) and an ESA-Belspo contract (CO-90-2141)
    corecore