49,621 research outputs found

    A retrospective study of the prevalence of the canine degenerative myelopathy associated superoxide dismutase 1 mutation (SOD1: c. 118G> A) in a referral population of German Shepherd dogs from the UK

    Get PDF
    BACKGROUND: Canine degenerative myelopathy (CDM) is an adult onset, progressive neurodegenerative disease of the spinal cord. The disease was originally described in the German Shepherd dog (GSD), but it is now known to occur in many other dog breeds. A previous study has identified a mutation in the superoxide dismutase 1 gene (SOD1:c.118G > A) that is associated with susceptibility to CDM. In the present study, restriction fragment length polymorphism (RFLP) analysis was used to genotype GSD for SOD1:c.118G > A in order to estimate the prevalence of the mutation in a referral population of GSD in the UK. RESULTS: This study demonstrated that the RFLP assay, based on use of PCR and subsequent digestion with the Eco571 enzyme, provided a simple genotyping test for the SOD1:c.118G > A mutation. In a young GSD population (i.e. dogs less than 6 years of age, before clinical signs of the disease usually become apparent), 8 of 50 dogs were found to be homozygous and a further 19 were heterozygous for the mutation. In dogs over 8 years of age, 21 of 50 dogs admitted to a tertiary referral hospital with pelvic limb ataxia as a major clinical sign were homozygous for the mutation, compared to none of 50 dogs of similar age, but where no neurological disease was reported on referral. CONCLUSIONS: This data suggests that genotyping for the SOD1:c.118G > A mutation is clinically applicable and that the mutation has a high degree of penetrance. Genotyping might also be useful for screening the GSD population to avoid mating of two carriers, but since the allele frequency is relatively high in the UK population of GSD, care should be taken to avoid reduction in genetic diversity within the breed

    Lander Trajectory Reconstruction computer program

    Get PDF
    The Lander Trajectory Reconstruction (LTR) computer program is a tool for analysis of the planetary entry trajectory and atmosphere reconstruction process for a lander or probe. The program can be divided into two parts: (1) the data generator and (2) the reconstructor. The data generator provides the real environment in which the lander or probe is presumed to find itself. The reconstructor reconstructs the entry trajectory and atmosphere using sensor data generated by the data generator and a Kalman-Schmidt consider filter. A wide variety of vehicle and environmental parameters may be either solved-for or considered in the filter process

    The azimuth structure of nuclear collisions -- I

    Full text link
    We describe azimuth structure commonly associated with elliptic and directed flow in the context of 2D angular autocorrelations for the purpose of precise separation of so-called nonflow (mainly minijets) from flow. We extend the Fourier-transform description of azimuth structure to include power spectra and autocorrelations related by the Wiener-Khintchine theorem. We analyze several examples of conventional flow analysis in that context and question the relevance of reaction plane estimation to flow analysis. We introduce the 2D angular autocorrelation with examples from data analysis and describe a simulation exercise which demonstrates precise separation of flow and nonflow using the 2D autocorrelation method. We show that an alternative correlation measure based on Pearson's normalized covariance provides a more intuitive measure of azimuth structure.Comment: 27 pages, 12 figure

    Power Spectra of the Total Occupancy in the Totally Asymmetric Simple Exclusion Process

    Full text link
    As a solvable and broadly applicable model system, the totally asymmetric exclusion process enjoys iconic status in the theory of non-equilibrium phase transitions. Here, we focus on the time dependence of the total number of particles on a 1-dimensional open lattice, and its power spectrum. Using both Monte Carlo simulations and analytic methods, we explore its behavior in different characteristic regimes. In the maximal current phase and on the coexistence line (between high/low density phases), the power spectrum displays algebraic decay, with exponents -1.62 and -2.00, respectively. Deep within the high/low density phases, we find pronounced \emph{oscillations}, which damp into power laws. This behavior can be understood in terms of driven biased diffusion with conserved noise in the bulk.Comment: 4 pages, 4 figure

    Darboux Coordinates and Liouville-Arnold Integration in Loop Algebras

    Get PDF
    Darboux coordinates are constructed on rational coadjoint orbits of the positive frequency part \wt{\frak{g}}^+ of loop algebras. These are given by the values of the spectral parameters at the divisors corresponding to eigenvector line bundles over the associated spectral curves, defined within a given matrix representation. A Liouville generating function is obtained in completely separated form and shown, through the Liouville-Arnold integration method, to lead to the Abel map linearization of all Hamiltonian flows induced by the spectral invariants. Serre duality is used to define a natural symplectic structure on the space of line bundles of suitable degree over a permissible class of spectral curves, and this is shown to be equivalent to the Kostant-Kirillov symplectic structure on rational coadjoint orbits. The general construction is given for g=gl(r)\frak{g}=\frak{gl}(r) or sl(r)\frak{sl}(r), with reductions to orbits of subalgebras determined as invariant fixed point sets under involutive automorphisms. The case g=sl(2)\frak{g=sl}(2) is shown to reproduce the classical integration methods for finite dimensional systems defined on quadrics, as well as the quasi-periodic solutions of the cubically nonlinear Schr\"odinger equation. For g=sl(3)\frak{g=sl}(3), the method is applied to the computation of quasi-periodic solutions of the two component coupled nonlinear Schr\"odinger equation.Comment: 61 pg

    Notch/Delta signaling constrains reengineering of pro-T cells by PU.1

    Get PDF
    PU.1 is essential for early stages of mouse T cell development but antagonizes it if expressed constitutively. Two separable mechanisms are involved: attenuation and diversion. Dysregulated PU.1 expression inhibits pro-T cell survival, proliferation, and passage through β-selection by blocking essential T cell transcription factors, signaling molecules, and Rag gene expression, which expression of a rearranged T cell antigen receptor transgene cannot rescue. However, Bcl2 transgenic cells are protected from this attenuation and may even undergo β-selection, as shown by PU.1 transduction of defined subsets of Bcl2 transgenic fetal thymocytes with differentiation in OP9-DL1 and OP9 control cultures. The outcome of PU.1 expression in these cells depends on Notch/Delta signaling. PU.1 can efficiently divert thymocytes toward a myeloid-like state with multigene regulatory changes, but Notch/Delta signaling vetoes diversion. Gene expression analysis distinguishes sets of critical T lineage regulatory genes with different combinatorial responses to PU.1 and Notch/Delta signals, suggesting particular importance for inhibition of E proteins, Myb, and/or Gfi1 (growth factor independence 1) in diversion. However, Notch signaling only protects against diversion of cells that have undergone T lineage specification after Thy-1 and CD25 up-regulation. The results imply that in T cell precursors, Notch/Delta signaling normally acts to modulate and channel PU.1 transcriptional activities during the stages from T lineage specification until commitment

    Possible Stellar Metallicity Enhancements from the Accretion of Planets

    Get PDF
    A number of recently discovered extrasolar planet candidates have surprisingly small orbits, which may indicate that considerable orbital migration takes place in protoplanetary systems. A natural consequence of orbital migration is for a series of planets to be accreted, destroyed, and then thoroughly mixed into the convective envelope of the central star. We study the ramifications of planet accretion for the final main sequence metallicity of the star. If maximum disk lifetimes are on the order of 10 Myr, stars with masses near 1 solar mass are predicted to have virtually no metallicity enhancement. On the other hand, early F and late A type stars with masses of 1.5--2.0 solar masses can experience significant metallicity enhancements due to their considerably smaller convection zones during the first 10 Myr of pre-main-sequence evolution. We show that the metallicities of an aggregate of unevolved F stars are consistent with an average star accreting about 2 Jupiter-mass planets from a protoplanetary disk having a 10 Myr dispersal time.Comment: 14 pages, AAS LaTeX, 3 figures, accepted to ApJ Letter

    Far-infrared vibrational properties of high-pressure-high-temperature C60 polymers and the C60 dimer

    Get PDF
    We report high-resolution far-infrared transmission measurements of the 2 + 2 cycloaddition C-60 dimer and two-dimensional rhombohedral and one-dimensional orthorhombic high-pressure high-temperature C60 polymers. In the spectral region investigated(20-650 cm(-1)), we see no low-energy interball modes, but symmetry breaking of the linked C-60 balls is evident in the complex spectrum of intramolecular modes. Experimental features suggest large splittings or frequency shifts of some IhC60-derived modes that are activated by symmetry reduction, implying that the balls are strongly distorted in these structures. We have calculated the vibrations of all three systems by first-principles quantum molecular dynamics and use them to assign the predominant IhC60 symmetries of observed modes. Pur calculations show unprecedentedly large downshifts of T-1u(2)-derived modes and extremely large splittings of other modes, both of which are consistent with the experimental spectra. For the rhombohedral and orthorhombic polymers, the T-1u(2)-derived mode that is polarized along the bonding direction is calculated to downshift below any T-1u(1)-derived modes. We also identify a previously unassigned feature near 610 cm(-1) in all three systems as a widely split or shifted mode derived from various silent IhC60 vibrations, confirming a strong perturbation model for these linked fullerene structures

    RHIC physics overview

    Full text link
    The results from data taken during the last several years at the Relativistic Heavy-Ion Collider (RHIC) will be reviewed in the paper. Several selected topics that further our understanding of constituent quark scaling, jet quenching and color screening effect of heavy quarkonia in the hot dense medium will be presented. Detector upgrades will further probe the properties of Quark Gluon Plasma. Future measurements with upgraded detectors will be presented. The discovery perspectives from future measurements will also be discussed.Comment: 9 pages, 4 figures, invited review article, published by Frontier of Physics in Chin
    • …
    corecore