49,621 research outputs found
A retrospective study of the prevalence of the canine degenerative myelopathy associated superoxide dismutase 1 mutation (SOD1: c. 118G> A) in a referral population of German Shepherd dogs from the UK
BACKGROUND: Canine degenerative myelopathy (CDM) is an adult onset, progressive neurodegenerative disease of the spinal cord. The disease was originally described in the German Shepherd dog (GSD), but it is now known to occur in many other dog breeds. A previous study has identified a mutation in the superoxide dismutase 1 gene (SOD1:c.118G > A) that is associated with susceptibility to CDM. In the present study, restriction fragment length polymorphism (RFLP) analysis was used to genotype GSD for SOD1:c.118G > A in order to estimate the prevalence of the mutation in a referral population of GSD in the UK. RESULTS: This study demonstrated that the RFLP assay, based on use of PCR and subsequent digestion with the Eco571 enzyme, provided a simple genotyping test for the SOD1:c.118G > A mutation. In a young GSD population (i.e. dogs less than 6 years of age, before clinical signs of the disease usually become apparent), 8 of 50 dogs were found to be homozygous and a further 19 were heterozygous for the mutation. In dogs over 8 years of age, 21 of 50 dogs admitted to a tertiary referral hospital with pelvic limb ataxia as a major clinical sign were homozygous for the mutation, compared to none of 50 dogs of similar age, but where no neurological disease was reported on referral. CONCLUSIONS: This data suggests that genotyping for the SOD1:c.118G > A mutation is clinically applicable and that the mutation has a high degree of penetrance. Genotyping might also be useful for screening the GSD population to avoid mating of two carriers, but since the allele frequency is relatively high in the UK population of GSD, care should be taken to avoid reduction in genetic diversity within the breed
Lander Trajectory Reconstruction computer program
The Lander Trajectory Reconstruction (LTR) computer program is a tool for analysis of the planetary entry trajectory and atmosphere reconstruction process for a lander or probe. The program can be divided into two parts: (1) the data generator and (2) the reconstructor. The data generator provides the real environment in which the lander or probe is presumed to find itself. The reconstructor reconstructs the entry trajectory and atmosphere using sensor data generated by the data generator and a Kalman-Schmidt consider filter. A wide variety of vehicle and environmental parameters may be either solved-for or considered in the filter process
The azimuth structure of nuclear collisions -- I
We describe azimuth structure commonly associated with elliptic and directed
flow in the context of 2D angular autocorrelations for the purpose of precise
separation of so-called nonflow (mainly minijets) from flow. We extend the
Fourier-transform description of azimuth structure to include power spectra and
autocorrelations related by the Wiener-Khintchine theorem. We analyze several
examples of conventional flow analysis in that context and question the
relevance of reaction plane estimation to flow analysis. We introduce the 2D
angular autocorrelation with examples from data analysis and describe a
simulation exercise which demonstrates precise separation of flow and nonflow
using the 2D autocorrelation method. We show that an alternative correlation
measure based on Pearson's normalized covariance provides a more intuitive
measure of azimuth structure.Comment: 27 pages, 12 figure
Power Spectra of the Total Occupancy in the Totally Asymmetric Simple Exclusion Process
As a solvable and broadly applicable model system, the totally asymmetric
exclusion process enjoys iconic status in the theory of non-equilibrium phase
transitions. Here, we focus on the time dependence of the total number of
particles on a 1-dimensional open lattice, and its power spectrum. Using both
Monte Carlo simulations and analytic methods, we explore its behavior in
different characteristic regimes. In the maximal current phase and on the
coexistence line (between high/low density phases), the power spectrum displays
algebraic decay, with exponents -1.62 and -2.00, respectively. Deep within the
high/low density phases, we find pronounced \emph{oscillations}, which damp
into power laws. This behavior can be understood in terms of driven biased
diffusion with conserved noise in the bulk.Comment: 4 pages, 4 figure
Darboux Coordinates and Liouville-Arnold Integration in Loop Algebras
Darboux coordinates are constructed on rational coadjoint orbits of the
positive frequency part \wt{\frak{g}}^+ of loop algebras. These are given by
the values of the spectral parameters at the divisors corresponding to
eigenvector line bundles over the associated spectral curves, defined within a
given matrix representation. A Liouville generating function is obtained in
completely separated form and shown, through the Liouville-Arnold integration
method, to lead to the Abel map linearization of all Hamiltonian flows induced
by the spectral invariants. Serre duality is used to define a natural
symplectic structure on the space of line bundles of suitable degree over a
permissible class of spectral curves, and this is shown to be equivalent to the
Kostant-Kirillov symplectic structure on rational coadjoint orbits. The general
construction is given for or , with
reductions to orbits of subalgebras determined as invariant fixed point sets
under involutive automorphisms. The case is shown to reproduce
the classical integration methods for finite dimensional systems defined on
quadrics, as well as the quasi-periodic solutions of the cubically nonlinear
Schr\"odinger equation. For , the method is applied to the
computation of quasi-periodic solutions of the two component coupled nonlinear
Schr\"odinger equation.Comment: 61 pg
Notch/Delta signaling constrains reengineering of pro-T cells by PU.1
PU.1 is essential for early stages of mouse T cell development but antagonizes it if expressed constitutively. Two separable mechanisms are involved: attenuation and diversion. Dysregulated PU.1 expression inhibits pro-T cell survival, proliferation, and passage through β-selection by blocking essential T cell transcription factors, signaling molecules, and Rag gene expression, which expression of a rearranged T cell antigen receptor transgene cannot rescue. However, Bcl2 transgenic cells are protected from this attenuation and may even undergo β-selection, as shown by PU.1 transduction of defined subsets of Bcl2 transgenic fetal thymocytes with differentiation in OP9-DL1 and OP9 control cultures. The outcome of PU.1 expression in these cells depends on Notch/Delta signaling. PU.1 can efficiently divert thymocytes toward a myeloid-like state with multigene regulatory changes, but Notch/Delta signaling vetoes diversion. Gene expression analysis distinguishes sets of critical T lineage regulatory genes with different combinatorial responses to PU.1 and Notch/Delta signals, suggesting particular importance for inhibition of E proteins, Myb, and/or Gfi1 (growth factor independence 1) in diversion. However, Notch signaling only protects against diversion of cells that have undergone T lineage specification after Thy-1 and CD25 up-regulation. The results imply that in T cell precursors, Notch/Delta signaling normally acts to modulate and channel PU.1 transcriptional activities during the stages from T lineage specification until commitment
Possible Stellar Metallicity Enhancements from the Accretion of Planets
A number of recently discovered extrasolar planet candidates have
surprisingly small orbits, which may indicate that considerable orbital
migration takes place in protoplanetary systems. A natural consequence of
orbital migration is for a series of planets to be accreted, destroyed, and
then thoroughly mixed into the convective envelope of the central star. We
study the ramifications of planet accretion for the final main sequence
metallicity of the star. If maximum disk lifetimes are on the order of 10 Myr,
stars with masses near 1 solar mass are predicted to have virtually no
metallicity enhancement. On the other hand, early F and late A type stars with
masses of 1.5--2.0 solar masses can experience significant metallicity
enhancements due to their considerably smaller convection zones during the
first 10 Myr of pre-main-sequence evolution. We show that the metallicities of
an aggregate of unevolved F stars are consistent with an average star accreting
about 2 Jupiter-mass planets from a protoplanetary disk having a 10 Myr
dispersal time.Comment: 14 pages, AAS LaTeX, 3 figures, accepted to ApJ Letter
Far-infrared vibrational properties of high-pressure-high-temperature C60 polymers and the C60 dimer
We report high-resolution far-infrared transmission measurements of the 2 + 2 cycloaddition C-60 dimer and two-dimensional rhombohedral and one-dimensional orthorhombic high-pressure high-temperature C60 polymers. In the spectral region investigated(20-650 cm(-1)), we see no low-energy interball modes, but symmetry breaking of the linked C-60 balls is evident in the complex spectrum of intramolecular modes. Experimental features suggest large splittings or frequency shifts of some IhC60-derived modes that are activated by symmetry reduction, implying that the balls are strongly distorted in these structures. We have calculated the vibrations of all three systems by first-principles quantum molecular dynamics and use them to assign the predominant IhC60 symmetries of observed modes. Pur calculations show unprecedentedly large downshifts of T-1u(2)-derived modes and extremely large splittings of other modes, both of which are consistent with the experimental spectra. For the rhombohedral and orthorhombic polymers, the T-1u(2)-derived mode that is polarized along the bonding direction is calculated to downshift below any T-1u(1)-derived modes. We also identify a previously unassigned feature near 610 cm(-1) in all three systems as a widely split or shifted mode derived from various silent IhC60 vibrations, confirming a strong perturbation model for these linked fullerene structures
RHIC physics overview
The results from data taken during the last several years at the Relativistic
Heavy-Ion Collider (RHIC) will be reviewed in the paper. Several selected
topics that further our understanding of constituent quark scaling, jet
quenching and color screening effect of heavy quarkonia in the hot dense medium
will be presented. Detector upgrades will further probe the properties of Quark
Gluon Plasma. Future measurements with upgraded detectors will be presented.
The discovery perspectives from future measurements will also be discussed.Comment: 9 pages, 4 figures, invited review article, published by Frontier of
Physics in Chin
- …