123 research outputs found

    Structure of the neutron-rich N=7 isotones 10Li and 9He

    Full text link
    The near threshold structure of the unbound N=7 isotones 10Li and 9He has been investigated using proton removal and breakup from intermediate energy (35 MeV/nucleon) secondary beams of 11Be and 14,15B. The coincident detection of the beam velocity 9Li and 8He fragments and neutrons permitted the relative energy of the in-flight decay of 10Li and 9He to be reconstructed. Both systems were found to exhibited virtual s-wave strength near threshold together with a higher-lying resonance.Comment: 4 pages, 2 figures, Contribution to INPC2010 - "International Nuclear Physics Conference", Vancouver, Canada, 4-9 July 2010, Proceedings to be published in Journal of Physics: Conference Serie

    Surface Morphology and Strain Relief in Surfactant Mediated Growth of Germanium on Silicon (111)

    Get PDF
    The growth of Ge on Si is strongly modified by adsorbates called surfactants. The relevance of the stress on surface morphology and the growth mode of Ge on Si(111) is presented in a detailed in situ study by high resolution low energy electron diffraction (LEED) during the deposition. The change from islanding to layer-by-layer growth mode is seen in the oscillatory intensity behaviour of the 00-spot. As a strain relief mechanism, the Ge-film forms a microscopic rough surface of small triangular and defect-free pyramids in the pseudomorphic growth regime up to 8 monolayers. As soon as the pyramids are completed and start to coalesce, strain relieving defects are created at their base, finally arranging to the dislocation network. Without the driving force for the micro-roughness, the stress, the surface flattens again showing a much larger terrace length. The formation process of the dislocation network results in a spot splitting in LEED, since the periodic dislocations at the interface give rise to elastic deformation of the surface. Surprisingly the Ge-film is relaxed to 70% immediately after 8 monolayers of coverage, which is attributed to the micro rough surface morphology, providing innumerous nucleation sites for dislocation

    Measurement of the 18Ne(a,p_0)21Na reaction cross section in the burning energy region for X-ray bursts

    Full text link
    The 18Ne(a,p)21Na reaction provides one of the main HCNO-breakout routes into the rp-process in X-ray bursts. The 18Ne(a,p_0)21Na reaction cross section has been determined for the first time in the Gamow energy region for peak temperatures T=2GK by measuring its time-reversal reaction 21Na(p,a)18Ne in inverse kinematics. The astrophysical rate for ground-state to ground-state transitions was found to be a factor of 2 lower than Hauser-Feshbach theoretical predictions. Our reduced rate will affect the physical conditions under which breakout from the HCNO cycles occurs via the 18Ne(a,p)21Na reaction.Comment: 5 pages, 3 figures, accepted for publication on Physical Review Letter

    Scattering of the halo nucleus 11Li and its core 9Li on 208Pb at energies around the Coulomb barrier

    Get PDF
    The first measurement of the elastic scattering of the halo nucleus 11Li and its core 9Li on 208Pb at energies around the Coulomb barrier is presented. The 11Li reaction showed a large cross section for the breakup channel, even at energies well below the barrier. The analysis of the 11Li + 208Pb scattering data in terms of the continuum-discretized coupled-channel calculations indicates that the effect of the coupling to the breakup channels produces a strong suppression of the elastic cross section at energies above and below the barrier. This effect is mainly due to the strong Coulomb coupling to the dipole states in the low-lying continuum of 11Li

    Structure of 13^{13}Be probed via secondary beam reactions

    Full text link
    The low-lying level structure of the unbound neutron-rich nucleus 13^{13}Be has been investigated via breakup on a carbon target of secondary beams of 14,15^{14,15}B at 35 MeV/nucleon. The coincident detection of the beam velocity 12^{12}Be fragments and neutrons permitted the invariant mass of the 12^{12}Be+nn and 12^{12}Be+nn+nn systems to be reconstructed. In the case of the breakup of 15^{15}B, a very narrow structure at threshold was observed in the 12^{12}Be+nn channel. Contrary to earlier stable beam fragmentation studies which identified this as a strongly interacting ss-wave virtual state in 13^{13}Be, analysis here of the 12^{12}Be+nn+nn events demonstrated that this was an artifact resulting from the sequential-decay of the 14^{14}Be(2+^+) state. Single-proton removal from 14^{14}B was found to populate a broad low-lying structure some 0.70 MeV above the neutron-decay threshold in addition to a less prominent feature at around 2.4 MeV. Based on the selectivity of the reaction and a comparison with (0-3)ω\hbar\omega shell-model calculations, the low-lying structure is concluded to most probably arise from closely spaced Jπ^\pi=1/2+^+ and 5/2+^+ resonances (Er_r=0.40±\pm0.03 and 0.850.11+0.15^{+0.15}_{-0.11} MeV), whilst the broad higher-lying feature is a second 5/2+^+ level (Er_r=2.35±\pm0.14 MeV). Taken in conjunction with earlier studies, it would appear that the lowest 1/2+^+ and 1/2^- levels lie relatively close together below 1 MeV.Comment: 14 pages, 13 figures, 2 tables. Accepted for publication in Physical Review

    High-Precision Measurement of the 19Ne Half-Life and Implications for Right-Handed Weak Currents

    Full text link
    We report a precise determination of the 19Ne half-life to be T1/2=17.262±0.007T_{1/2} = 17.262 \pm 0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current Standard Model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.Comment: 5 pages and 5 figures. Paper accepted for publication in Phys. Rev. Let

    Two-neutron transfer reaction mechanisms in 12^{12}C(6^6He,4^{4}He)14^{14}C using a realistic three-body 6^{6}He model

    Get PDF
    The reaction mechanisms of the two-neutron transfer reaction 12^{12}C(6^6He,4^4He) have been studied at 30 MeV at the TRIUMF ISAC-II facility using the SHARC charged-particle detector array. Optical potential parameters have been extracted from the analysis of the elastic scattering angular distribution. The new potential has been applied to the study of the transfer angular distribution to the 22+^+_2 8.32 MeV state in 14^{14}C, using a realistic 3-body 6^6He model and advanced shell model calculations for the carbon structure, allowing to calculate the relative contributions of the simultaneous and sequential two-neutron transfer. The reaction model provides a good description of the 30 MeV data set and shows that the simultaneous process is the dominant transfer mechanism. Sensitivity tests of optical potential parameters show that the final results can be considerably affected by the choice of optical potentials. A reanalysis of data measured previously at 18 MeV however, is not as well described by the same reaction model, suggesting that one needs to include higher order effects in the reaction mechanism.Comment: 9 pages, 9 figure

    Emergence of the N=16 shell gap in ^(21)O

    Get PDF
    This is the publisher's version, also available electronically from http://journals.aps.org/prc/abstract/10.1103/PhysRevC.84.011301
    corecore