237 research outputs found

    Cryptosporidium infection in patients with gastroenteritis in Sari, Iran

    Get PDF
    Background: Cryptosporidiosis is a common coccidian parasite infection in patients with diarrhea that has worldwide distribution especially in developed countries. Therefore, the aim of this study was to determine the occurrence of Cryptosporidium infection in patients with gastroenteritis admitted to hospitals of Mazandaran University of Medical Sciences by parasitological and molecular methods in Sari, Iran. Methods: Stool samples were collected from 348 patients with gastroenteritis admitted to the hospitals of Medical University in the Sari and Ghaemshahr cities in Mazandaran Province, Northern Iran in 2010-2011. Oocysts of Cryptosporidium identified using Formalin-Ether concentration method and stained by Aacidfast staining (AFS) and Auramine phenol fluorescence (APF). Genomic DAN extracted from microscopically positive samples and nested PCR -RFLP by using SSU rRNA that identifies of the species of cryptosporidium. Results: In 348 patients with gastroenteritis, the most clinical symptoms were diarrhea, nausea, vomiting, dehydration, fever and weight loss. 2.3% (8 cases) of diarrheal samples tested by both microscopy and molecular methods were positive for the presence of cryptosporidium. Nested PCR products yielded unique bands of 846 bp, correspond to cryptosporidium. Species diagnosis carried out by digesting the secondary PCR product with SspI restriction enzyme, which noted 3 clearly bands of 449, 254, and 108 bp correspond to Cryptosporidium spp. Conclusion: The results of present study on Cryptosporidium spp. in this area can make a background data for control programs and further molecular analyses. Thus, further work needs to determine the origin of Cryptosporidium species in this area

    Synthesizing Multiple Stakeholder Perspectives on Using Virtual Reality to Improve the Periprocedural Experience in Children and Adolescents: Survey Study

    Get PDF
    Background: Virtual reality (VR) technology is a powerful tool for augmenting patient experience in pediatric settings. Incorporating the needs and values of stakeholders in the design of VR apps in health care can contribute to better outcomes and meaningful experiences for patients. Objective: We used a multiperspective approach to investigate how VR apps can be designed to improve the periprocedural experiences of children and adolescents, particularly those with severe anxiety. Methods: This study included a focus group (n=4) and a survey (n=56) of clinicians. Semistructured interviews were conducted with children and adolescents in an immunization clinic (n=3) and perioperative setting (n=65) and with parents and carers in an immunization clinic (n=3) and perioperative setting (n=35). Results: Qualitative data were examined to determine the experience and psychological needs and intervention and design strategies that may contribute to better experiences for children in three age groups (4-7, 8-11, and 12-17 years). Quantitative data were used to identify areas of priority for future VR interventions. Conclusions: We propose a set of ten design considerations for the creation of future VR experiences for pediatric patients. Enhancing patient experience may be achieved by combining multiple VR solutions through a holistic approach considering the roles of clinicians and carers and the temporality of the patient’s experience. These situations require personalized solutions to fulfill the needs of pediatric patients before and during the medical procedure. In particular, communication should be placed at the center of preprocedure solutions, while emotional goals can be embedded into a procedure-focused VR app to help patients shift their focus in a meaningful way to build skills to manage their anxiety

    Evaluation of the Capability of Carbon Dioxide Greenhouse Gas Absorption Using Nano Bio-Activated Carbon of Crataegus Sanguinea Core

    Get PDF
    BACKGROUND AND OBJECTIVE: Considerable increase in carbon dioxide gas in the Earth's atmosphere has caused several problems such as increasing the temperature of the earth, droughts and sudden changes in the climate. The purpose of this study was to evaluate the capability of carbon dioxide as greenhouse gas absorption using activated nanobiocarbon from the Crataegus Sanguinea core. METHODS: In this experimental study, the carbon dioxide gas penetration time in three subgroups with pressure (5,10,15 bars), flow (5,10,15 ml/min) and temperatures (20,30,60 °C) at concentrations of 0 to 1 gr / ml through a carbon dioxide gas capsule in a fixed bed column filled with 2 g of adsorbent synthesized by a carbon dioxide gas sensor. The synthesized nano-biocarbon adsorbent from the Crataegus Sanguinea Core was pyrolysed at a temperature of 300 ° C and activated at 600 °C. The research data were examined with pseudo -first-order and pseudo-second-order models. FINDINGS: Significant increase in gas infiltration time was observed at 15 bars pressure (86.71±0.09 min, p0.98 on empirical data from absorption. CONCLUSION: The results of the study showed that increasing pressure and decreasing temperature and flow increase the time of carbon dioxide penetration onto synthesized adsorbent

    Degradation pathways in standard and inverted DBP-C 70 based organic solar cells

    Get PDF
    Achieving long-term stability in organic solar cells is a remaining bottleneck for the commercialization of this otherwise highly appealing technology. In this work, we study the performance and stability differences in standard and inverted DBP/C70 based organic solar cells. Differences in the charge-transfer state properties of inverted and standard configuration DBP/C70 solar cells are revealed by sensitive external quantum efficiency measurements, leading to differences in the open-circuit voltages of the devices. The degradation of standard and inverted solar cell configurations at ISOS aging test conditions (ISOS-D-3 and ISOS-T-3) was investigated and compared. The results indicate that the performance drop in the small molecule bilayer solar cells is less related to changes at the D-A interface, suggesting also a pronounced morphological stability, and instead, in the case of inverted cells, dominated by degradation at the electron transport layer (ETL) bathocuproine (BCP). Photoluminescence measurements, electron-only-device characteristics, and stability measurements show improved exciton blocking, electron transport properties and a higher stability for BCP/Ag ETL stacks, giving rise to inverted devices with enhanced performance and device stability

    Deciphering Electron Interplay at the Fullerene/Sputtered TiOxInterface: A Barrier-Free Electron Extraction for Organic Solar Cells

    Get PDF
    Organic photovoltaics (OPVs) technology now offers power conversion efficiency (PCE) of over 18% and is one of the main emerging photovoltaic technologies. In such devices, titanium dioxide (TiOx) has been vastly used as an electron extraction layer, typically showing unwanted charge-extraction barriers and the need for light-soaking. In the present work, using advanced photoemission spectroscopies, we investigate the electronic interplay at the interface between low-temperature-sputtered TiOx and C70 acceptor fullerene molecules. We show that defect states in the band gap of TiOx are quenched by C70 while an interfacial state appears. This new interfacial state is expected to support the favorable energy band alignment observed, showing a perfect match of transport levels, and thus barrier-free extraction of charges, making low-temperature-sputtered TiOx a good candidate for the next generation of organic solar cells

    Comparison of Catalysts Preyssler and Silica-Supported Nano Preyssler in the Synthesis of Acetyl Salicylic Acid

    Get PDF
    The extensive demand for cleaner environment is forcing chemical industry to use less hazardous materials. In this regard, heteropolyacids attracted considerable amount of interest due to the less toxic behavior in addition of possessing higher acidity. Heteropoly acids have been used as catalysts for the reaction of salicylic acid with acetic anhydride. The performance of different forms of heteropoly acids in the presence of acetic anhydride as acetylating agent for acetylation of salicylic acid was compared. The best conditions were observed using Preyssler and Silica-supported Preyssler Nanoparticles as catalysts. The catalyst is recyclable and reusable

    Production of SARS-CoV-2 Antibodies and Emergence of the Clinical Symptoms of COVID-19

    Get PDF
    Coronavirus disease 2019 (COVID-19) is a worldwide public health problem that has attracted much attention due to its clinical findings. Measurement of IgG and IgM antibodies is of great importance for researchers and it will help to develop a new diagnostic and therapeutic method in clinical care. In this cross-sectional study, we aim to measure the IgG and IgM antibody levels in 401 suspected COVID-19 volunteers. We also measure the time duration for the appearance of IgG and IgM antibodies from the onset of symptoms to sampling time. Of 401 participants enrolled in the study, 255 (63.59) were healthy, 79 (19.70) were a carrier, 59 (14.71) were cured and 8 (1.99) were borderline. Of 142 subjects diagnosed with COVID-19, 41 (28.87) presented with gastrointestinal (GI) symptoms, 83 (58.45) had no GI symptoms, and 18 (12.68) were asymptomatic. According to our findings, the measurement of IgG and IgM antibodies will provide the tool for the diagnosis of COVID-19 and significantly boost research into novel diagnostic and therapeutic approaches

    Global, regional, and national sex-specific burden and control of the HIV epidemic, 1990–2019, for 204 countries and territories : the Global Burden of Diseases Study 2019

    Get PDF
    Background: The sustainable development goals (SDGs) aim to end HIV/AIDS as a public health threat by 2030. Understanding the current state of the HIV epidemic and its change over time is essential to this effort. This study assesses the current sex-specific HIV burden in 204 countries and territories and measures progress in the control of the epidemic. Methods: To estimate age-specific and sex-specific trends in 48 of 204 countries, we extended the Estimation and Projection Package Age-Sex Model to also implement the spectrum paediatric model. We used this model in cases where age and sex specific HIV-seroprevalence surveys and antenatal care-clinic sentinel surveillance data were available. For the remaining 156 of 204 locations, we developed a cohort-incidence bias adjustment to derive incidence as a function of cause-of-death data from vital registration systems. The incidence was input to a custom Spectrum model. To assess progress, we measured the percentage change in incident cases and deaths between 2010 and 2019 (threshold >75% decline), the ratio of incident cases to number of people living with HIV (incidence-to-prevalence ratio threshold <0·03), and the ratio of incident cases to deaths (incidence-to-mortality ratio threshold <1·0). Findings: In 2019, there were 36·8 million (95% uncertainty interval [UI] 35·1–38·9) people living with HIV worldwide. There were 0·84 males (95% UI 0·78–0·91) per female living with HIV in 2019, 0·99 male infections (0·91–1·10) for every female infection, and 1·02 male deaths (0·95–1·10) per female death. Global progress in incident cases and deaths between 2010 and 2019 was driven by sub-Saharan Africa (with a 28·52% decrease in incident cases, 95% UI 19·58–35·43, and a 39·66% decrease in deaths, 36·49–42·36). Elsewhere, the incidence remained stable or increased, whereas deaths generally decreased. In 2019, the global incidence-to-prevalence ratio was 0·05 (95% UI 0·05–0·06) and the global incidence-to-mortality ratio was 1·94 (1·76–2·12). No regions met suggested thresholds for progress. Interpretation: Sub-Saharan Africa had both the highest HIV burden and the greatest progress between 1990 and 2019. The number of incident cases and deaths in males and females approached parity in 2019, although there remained more females with HIV than males with HIV. Globally, the HIV epidemic is far from the UNAIDS benchmarks on progress metrics

    Crystal Structure of the Minimalist Max-E47 Protein Chimera

    Get PDF
    Max-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH) superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5′-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 Å resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47 dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts
    corecore