7 research outputs found

    Viral Control of Mitochondrial Apoptosis

    Get PDF
    Throughout the process of pathogen–host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus

    Using habitat models to identify marine Important Bird and Biodiversity Areas for Chinstrap penguins in the South Orkney Islands

    Get PDF
    Tracking individual marine predators can provide vital information to aid the identification of important activity (foraging, commuting, rafting, resting, etc.) hotspots and therefore also to delineate priority sites for conservation. However, in certain locations (e.g. Antarctica) many marine mammal or seabird colonies remain untracked due to logistical constraints, and the colonies that are studied may not be the most important in terms of conservation priorities. Using data for one of the most abundant seabirds in the Antarctic as a case study (the Chinstrap penguin Pygoscelis antarcticus), we tested the use of correlative habitat models (used to predict distribution around untracked colonies) to overcome this limitation, and to enable the identification of important areas at-sea for colonies where tracking data are not available. First, Important Bird and Biodiversity Areas (IBA) were identified using a standardised, published approach using empirical data from birds tracked from colonies located in the South Orkney Islands. Subsequently, novel approaches using predicted distributions of Chinstrap penguins derived from habitatcorrelative habitat models were applied to identify important marine areas, and the results compared with the IBAs. Data were collected from 4 colonies over 4 years and during different stages of the breeding season. Results showed a high degree of overlap between the areas identified as important by observed data (IBAs) and by predicted distributions, revealing that habitat preference models can be used with a high degree of confidence to identify marine IBAs for these penguins. We provide a new method for designating a network of marine IBAs for penguins in Antarctic waters, based on outputs from habitatcorrelative habitat models when tracking data are not available. This can contribute to an evidence-based and precautionary approach to aid the management framework for Antarctic fisheries and for the protection of birds

    2011 SOSORT guidelines: Orthopaedic and Rehabilitation treatment of idiopathic scoliosis during growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The International Scientific Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT), that produced its first Guidelines in 2005, felt the need to revise them and increase their scientific quality. The aim is to offer to all professionals and their patients an evidence-based updated review of the actual evidence on conservative treatment of idiopathic scoliosis (CTIS).</p> <p>Methods</p> <p>All types of professionals (specialty physicians, and allied health professionals) engaged in CTIS have been involved together with a methodologist and a patient representative. A review of all the relevant literature and of the existing Guidelines have been performed. Documents, recommendations, and practical approach flow charts have been developed according to a Delphi procedure. A methodological and practical review has been made, and a final Consensus Session was held during the 2011 Barcelona SOSORT Meeting.</p> <p>Results</p> <p>The contents of the document are: methodology; generalities on idiopathic scoliosis; approach to CTIS in different patients, with practical flow-charts; literature review and recommendations on assessment, bracing, physiotherapy, Physiotherapeutic Specific Exercises (PSE) and other CTIS. Sixty-five recommendations have been given, divided in the following topics: Bracing (20 recommendations), PSE to prevent scoliosis progression during growth (8), PSE during brace treatment and surgical therapy (5), Other conservative treatments (3), Respiratory function and exercises (3), Sports activities (6), Assessment (20). No recommendations reached a Strength of Evidence level I; 2 were level II; 7 level III; and 20 level IV; through the Consensus procedure 26 reached level V and 10 level VI. The Strength of Recommendations was Grade A for 13, B for 49 and C for 3; none had grade D.</p> <p>Conclusion</p> <p>These Guidelines have been a big effort of SOSORT to paint the actual situation of CTIS, starting from the evidence, and filling all the gray areas using a scientific method. According to results, it is possible to understand the lack of research in general on CTIS. SOSORT invites researchers to join, and clinicians to develop good research strategies to allow in the future to support or refute these recommendations according to new and stronger evidence.</p

    Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas

    No full text
    corecore