8 research outputs found

    Terahertz probing of anisotropic conductivity and morphology of CuMnAs epitaxial thin films

    Full text link
    Antiferromagnetic CuMnAs thin films have attracted attention since the discovery of the manipulation of their magnetic structure via electrical, optical, and terahertz pulses of electric fields, enabling convenient approaches to the switching between magnetoresistive states of the film for the information storage. However, the magnetic structure and, thus, the efficiency of the manipulation can be affected by the film morphology and growth defects. In this study, we investigate the properties of CuMnAs thin films by probing the defect-related uniaxial anisotropy of electric conductivity by contact-free terahertz transmission spectroscopy. We show that the terahertz measurements conveniently detect the conductivity anisotropy, that are consistent with conventional DC Hall-bar measurements. Moreover, the terahertz technique allows for considerably finer determination of anisotropy axes and it is less sensitive to the local film degradation. Thanks to the averaging over a large detection area, the THz probing also allows for an analysis of strongly non-uniform thin films. Using scanning near-field terahertz and electron microscopies, we relate the observed anisotropic conductivity of CuMnAs to the elongation and orientation of growth defects, which influence the local microscopic conductivity. We also demonstrate control over the morphology of defects by using vicinal substrates.Comment: 33 pages, 16 figure

    Microscopic measurements of the properties of nanostructured silicon thin films

    No full text
    katedra fyzikální elektronik

    Nanoscale characterization of ultra-thin tungsten films deposited by radio-frequency magnetron sputtering

    No full text
    In this article, atomic force microscopy was used for nanoscale characterization of ultra-thin tungsten films which were deposited on silicon substrate. Radio-frequency magnetron sputtering was used for tungsten deposition on the surface. © 2015 IEEE

    A detailed mechanism of degradation behaviour of biodegradable as-ECAPed Zn-0.8Mg-0.2Sr with emphasis on localized corrosion attack

    No full text
    In this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy. The influence of microstructural and surface features on the corrosion mechanism was investigated. Despite its significance, the surface composition before exposure is often neglected by the scientific community. The analyses revealed the formation of thin ZnO, MgO, and MgCO3 layers on the surface of the material before exposure. These layers participated in the formation of corrosion products, leading to the predominant occurrence of hydrozincite. In addition, the layers possessed different resistance to the environment, resulting in localized corrosion attacks. The segregation of Mg on the Zn grain boundaries with lower potential compared with the Zn-matrix was revealed by atom probe tomography and atomic force microscopy. The degradation process was initiated by the activity of micro-galvanic cells, specifically Zn – Mg2Zn11/SrZn13. This process led to the activity of the crevice corrosion mechanism and subsequent attack to a depth of 250 μm. The corrosion rate of the alloy determined by the weight loss method was 0.36 mm·a−1. Based on this detailed study, the degradation mechanism of the Zn-0.8Mg-0.2Sr alloy is proposed
    corecore