76 research outputs found

    Constitutive Expressor of Pathogenesis-Related Genes5 affects cell wall biogenesis and trichome development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Arabidopsis thaliana <it>CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 </it>(<it>CPR5</it>) gene has been previously implicated in disease resistance, cell proliferation, cell death, and sugar sensing, and encodes a putative membrane protein of unknown biochemical function. Trichome development is also affected in <it>cpr5 </it>plants, which have leaf trichomes that are reduced in size and branch number.</p> <p>Results</p> <p>In the work presented here, the role of <it>CPR5 </it>in trichome development was examined. Trichomes on <it>cpr5 </it>mutants had reduced birefringence, suggesting a difference in cell wall structure between <it>cpr5 </it>and wild-type trichomes. Consistent with this, leaf cell walls of <it>cpr5 </it>plants contained significantly less paracrystalline cellulose and had an altered wall carbohydrate composition. We also found that the effects of <it>cpr5 </it>on trichome size and endoreplication of trichome nuclear DNA were epistatic to the effects of mutations in <it>triptychon </it>(<it>try</it>) or overexpression of <it>GLABRA3</it>, indicating that these trichome developmental regulators are dependant on <it>CPR5 </it>function for their effects on trichome expansion and endoreplication.</p> <p>Conclusion</p> <p>Our results suggest that <it>CPR5 </it>is unlikely to be a specific regulator of pathogen response pathways or senescence, but rather functions either in cell wall biogenesis or in multiple cell signaling or transcription response pathways.</p

    BRANCHLESS TRICHOMES links cell shape and cell cycle control in Arabidopsis trichomes

    Get PDF
    Endoreplication, also called endoreduplication, is a modified cell cycle in which DNA is repeatedly replicated without subsequent cell division. Endoreplication is often associated with increased cell size and specialized cell shapes, but the mechanism coordinating DNA content with shape and size remains obscure. Here we identify the product of the BRANCHLESS TRICHOMES (BLT) gene, a protein of hitherto unknown function that has been conserved throughout angiosperm evolution, as a link in coordinating cell shape and nuclear DNA content in endoreplicated Arabidopsis trichomes. Loss-of-function mutations in BLT were found to enhance the multicellular trichome phenotype of mutants in the SIAMESE (SIM) gene, which encodes a repressor of endoreplication. Epistasis and overexpression experiments revealed that BLT encodes a key regulator of trichome branching. Additional experiments showed that BLT interacts both genetically and physically with STICHEL, another key regulator of trichome branching. Although blt mutants have normal trichome DNA content, overexpression of BLT results in an additional round of endoreplication, and blt mutants uncouple DNA content from morphogenesis in mutants with increased trichome branching, further emphasizing its role in linking cell shape and endoreplication. © 2011. Published by The Company of Biologists Ltd

    Severe bronchopulmonary dysplasia improved by noninvasive positive pressure ventilation: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>This is the first report to describe the feasibility and effectiveness of noninvasive positive pressure ventilation in the secondary treatment of bronchopulmonary dysplasia.</p> <p>Case presentation</p> <p>A former male preterm of Caucasian ethnicity delivered at 29 weeks gestation developed severe bronchopulmonary dysplasia. At the age of six months he was in permanent tachypnea and dyspnea and in need of 100% oxygen with a flow of 2.0 L/minute via a nasal cannula. Intermittent nocturnal noninvasive positive pressure ventilation was then administered for seven hours daily. The ventilator was set at a positive end-expiratory pressure of 6 cmH<sub>2</sub>O, with pressure support of 4 cmH<sub>2</sub>O, trigger at 1.4 mL/second, and a maximum inspiratory time of 0.7 seconds. Over the course of seven weeks, the patient's maximum daytime fraction of inspired oxygen via nasal cannula decreased from 1.0 to 0.75, his respiratory rate from 64 breaths/minute to 50 breaths/minute and carbon dioxide from 58 mmHg to 44 mmHg.</p> <p>Conclusion</p> <p>Noninvasive positive pressure ventilation may be a novel therapeutic option for established severe bronchopulmonary dysplasia. In the case presented, noninvasive positive pressure ventilation achieved sustained improvement in ventilation and thus prepared our patient for safe home oxygen therapy.</p

    Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors

    Get PDF
    The variation in the expression patterns of the gap genes in the blastoderm of the fruit fly Drosophila melanogaster reduces over time as a result of cross regulation between these genes, a fact that we have demonstrated in an accompanying article in PLoS Biology (see Manu et al., doi:10.1371/journal.pbio.1000049). This biologically essential process is an example of the phenomenon known as canalization. It has been suggested that the developmental trajectory of a wild-type organism is inherently stable, and that canalization is a manifestation of this property. Although the role of gap genes in the canalization process was established by correctly predicting the response of the system to particular perturbations, the stability of the developmental trajectory remains to be investigated. For many years, it has been speculated that stability against perturbations during development can be described by dynamical systems having attracting sets that drive reductions of volume in phase space. In this paper, we show that both the reduction in variability of gap gene expression as well as shifts in the position of posterior gap gene domains are the result of the actions of attractors in the gap gene dynamical system. Two biologically distinct dynamical regions exist in the early embryo, separated by a bifurcation at 53% egg length. In the anterior region, reduction in variation occurs because of stability induced by point attractors, while in the posterior, the stability of the developmental trajectory arises from a one-dimensional attracting manifold. This manifold also controls a previously characterized anterior shift of posterior region gap domains. Our analysis shows that the complex phenomena of canalization and pattern formation in the Drosophila blastoderm can be understood in terms of the qualitative features of the dynamical system. The result confirms the idea that attractors are important for developmental stability and shows a richer variety of dynamical attractors in developmental systems than has been previously recognized

    Spatial Bistability Generates hunchback Expression Sharpness in the Drosophila Embryo

    Get PDF
    During embryonic development, the positional information provided by concentration gradients of maternal factors directs pattern formation by providing spatially dependent cues for gene expression. In the fruit fly, Drosophila melanogaster, a classic example of this is the sharp on–off activation of the hunchback (hb) gene at midembryo, in response to local concentrations of the smooth anterior–posterior Bicoid (Bcd) gradient. The regulatory region for hb contains multiple binding sites for the Bcd protein as well as multiple binding sites for the Hb protein. Some previous studies have suggested that Bcd is sufficient for properly sharpened Hb expression, yet other evidence suggests a need for additional regulation. We experimentally quantified the dynamics of hb gene expression in flies that were wild-type, were mutant for hb self-regulation or Bcd binding, or contained an artificial promoter construct consisting of six Bcd and two Hb sites. In addition to these experiments, we developed a reaction–diffusion model of hb transcription, with Bcd cooperative binding and hb self-regulation, and used Zero Eigenvalue Analysis to look for multiple stationary states in the reaction network. Our model reproduces the hb developmental dynamics and correctly predicts the mutant patterns. Analysis of our model indicates that the Hb sharpness can be produced by spatial bistability, in which hb self-regulation produces two stable levels of expression. In the absence of self-regulation, the bistable behavior vanishes and Hb sharpness is disrupted. Bcd cooperative binding affects the position where bistability occurs but is not itself sufficient for a sharp Hb pattern. Our results show that the control of Hb sharpness and positioning, by hb self-regulation and Bcd cooperativity, respectively, are separate processes that can be altered independently. Our model, which matches the changes in Hb position and sharpness observed in different experiments, provides a theoretical framework for understanding the data and in particular indicates that spatial bistability can play a central role in threshold-dependent reading mechanisms of positional information

    Endoreplication Controls Cell Fate Maintenance

    Get PDF
    Cell-fate specification is typically thought to precede and determine cell-cycle regulation during differentiation. Here we show that endoreplication, also known as endoreduplication, a specialized cell-cycle variant often associated with cell differentiation but also frequently occurring in malignant cells, plays a role in maintaining cell fate. For our study we have used Arabidopsis trichomes as a model system and have manipulated endoreplication levels via mutants of cell-cycle regulators and overexpression of cell-cycle inhibitors under a trichome-specific promoter. Strikingly, a reduction of endoreplication resulted in reduced trichome numbers and caused trichomes to lose their identity. Live observations of young Arabidopsis leaves revealed that dedifferentiating trichomes re-entered mitosis and were re-integrated into the epidermal pavement-cell layer, acquiring the typical characteristics of the surrounding epidermal cells. Conversely, when we promoted endoreplication in glabrous patterning mutants, trichome fate could be restored, demonstrating that endoreplication is an important determinant of cell identity. Our data lead to a new model of cell-fate control and tissue integrity during development by revealing a cell-fate quality control system at the tissue level

    Gene Circuit Analysis of the Terminal Gap Gene huckebein

    Get PDF
    The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network
    • …
    corecore