1,444 research outputs found

    Theory for Spin-Polarized Oscillations in Nonlinear Magneto-Optics due to Quantum Well States

    Full text link
    Using an electronic tight-binding theory we calculate the nonlinear magneto-optical response from an x-Cu/1Fe/Cu(001) film as a function of frequency and Cu overlayer thickness (x=3 ... 25). We find very strong spin-polarized quantum well oscillations in the nonlinear magneto-optical Kerr effect (NOLIMOKE). These are enhanced by the large density of Fe dd states close to the Fermi level acting as intermediate states for frequency doubling. In good agreement with experiment we find two oscillation periods of 6-7 and 11 monolayers the latter being more pronounced.Comment: 12 pages, Revtex, 3 postscript figure

    Influences on the formability and mechanical properties of 7000-aluminum alloys in hot and warm forming

    Get PDF
    Aluminum alloys of the 7000 series possess high lightweight potential due to their high specific tensile strength combined with a good ultimate elongation. For this reason, hot-formed boron-manganese-steel parts can be substituted by these alloys. Therefore, the application of these aluminum alloys for structural car body components is desired to decrease the weight of the body in white and consequently CO2 emissions during vehicle operation. These days, the limited formability at room temperature limits an application in the automobile industry. By increasing the deformation temperature, formability can be improved. In this study, two different approaches to increase the formability of these alloys by means of higher temperatures were investigated. The first approach is a warm forming route to form sheets in T6 temper state with high tensile strength at temperatures between 150 °C and 300 °C. The second approach is a hot forming route. Here, the material is annealed at solution heat treatment temperature and formed directly after the annealing step. Additionally, a quench step is included in the forming stage. After the forming and quenching step, the sheets have to be artificially aged to achieve the high specific tensile strength. In this study, several parameters in the presented process routes, which influence the formability and the mechanical properties, have been investigated for the aluminum alloys EN AW7022 and EN AW7075. © Published under licence by IOP Publishing Ltd

    Mechanical properties and formability of en AW-7075 in cold forming processes

    Get PDF
    Due to a low density and high tensile strength, the aluminum alloy EN AW 7075 T6 offers a high lightweight potential for structural components. Since its formability is limited at room temperature in the T6 temper state, the potential of this alloy for automotive bodies is only utilizable by adapted deep drawing processes. In recent years, process chains suited for warm and hot forming have been researched and developed. However, warm and hot forming solutions require additional process steps and a complex tooling system in comparison to cold forming processes. Alternatively, the forming of such blanks at room temperature in the W temper state is favorable since conventional tools can be used. The W temper state is a heat treatment condition achieved after solution heat treatment and subsequent quenching, which is characterized by an increased ductility. However, this condition is unstable, due to the onset of natural ageing. With increasing time after the quenching step, the strength of the material increases, which leads to a reduction of formability. Another phenomenon that occurs after quenching is the Portevin Le-Chatelier effect. This effect causes the formation of flow lines during cold forming and results in a decrease of ductility. Hence, the objective of the investigations was to determine the formability of EN AW 7075 as a function of the natural ageing time after solution heat treatment and quenching. Therefore, tensile tests of various aged samples were carried out. The results show a relation of the formability to the natural ageing time and a dependency on the quenching rate. Furthermore, a heat treatment strategy for EN AW-7075 was developed, that considers manufacturing processes like the cathodic dip coating. The influence of the quenching rate, ageing time and temperature as well as the influence of temperature of the paint baking process after the cathodic dip coating were considered. Therefore, a design of experiments and tensile tests were carried out. Thus, the deep drawing of EN AW-7075 at room temperature is particularly promoted. © 2020 Published under licence by IOP Publishing Ltd

    Postoperative Albumin Drop Is a Marker for Surgical Stress and a Predictor for Clinical Outcome: A Pilot Study.

    Get PDF
    Background. Surgical stress during major surgery may be related to adverse clinical outcomes and early quantification of stress response would be useful to allow prompt interventions. The aim of this study was to evaluate the acute phase protein albumin in the context of the postoperative stress response. Methods. This prospective pilot study included 70 patients undergoing frequent abdominal procedures of different magnitude. Albumin (Alb) and C-reactive protein (CRP) levels were measured once daily starting the day before surgery until postoperative day (POD) 5. Maximal Alb decrease (Alb Δ min) was correlated with clinical parameters of surgical stress, postoperative complications, and length of stay. Results. Albumin values dropped immediately after surgery by about 10 g/L (42.2 ± 4.5 g/L preoperatively versus 33.8 ± 5.3 g/L at day 1, P < 0.001). Alb Δ min was correlated with operation length (Pearson ρ = 0.470, P < 0.001), estimated blood loss (ρ = 0.605, P < 0.001), and maximal CRP values (ρ = 0.391, P = 0.002). Alb Δ min levels were significantly higher in patients having complications (10.0 ± 5.4 versus 6.1 ± 5.2, P = 0.005) and a longer hospital stay (ρ = 0.285, P < 0.020). Conclusion. Early postoperative albumin drop appeared to reflect the magnitude of surgical trauma and was correlated with adverse clinical outcomes. Its promising role as early marker for stress response deserves further prospective evaluation

    On hybrid states of two and three level atoms

    Full text link
    We calculate atom-photon resonances in the Wigner-Weisskopf model, admitting two photons and choosing a particular coupling function. We also present a rough description of the set of resonances in a model for a three-level atom coupled to the photon field. We give a general picture of matter-field resonances these results fit into.Comment: 33 pages, 12 figure

    Uhlmann's geometric phase in presence of isotropic decoherence

    Get PDF
    Uhlmann's mixed state geometric phase [Rep. Math. Phys. {\bf 24}, 229 (1986)] is analyzed in the case of a qubit affected by isotropic decoherence treated in the Markovian approximation. It is demonstrated that this phase decreases rapidly with increasing decoherence rate and that it is most fragile to weak decoherence for pure or nearly pure initial states. In the unitary case, we compare Uhlmann's geometric phase for mixed states with that occurring in standard Mach-Zehnder interferometry [Phys. Rev. Lett. {\bf 85}, 2845 (2000)] and show that the latter is more robust to reduction in the length of the Bloch vector. We also describe how Uhlmann's geometric phase in the present case could in principle be realized experimentally.Comment: New ref added, refs updated, journal ref adde

    Pre- and postbariatric subtypes and their predictive value for health-related outcomes measured three years after surgery

    Get PDF
    Background: Although bariatric surgery is the most effective treatment for severe obesity, a subgroup of patients shows insufficient postbariatric outcomes. Differences may at least in part result from heterogeneous patient profiles regarding reactive and regulative temperament, emotion dysregulation, and disinhibited eating. This study aims to subtype patients based on these aspects before and two years after bariatric surgery and tests the predictive value of identified subtypes for health-related outcomes three years after surgery

    Symmetry Analysis of Second Harmonic Generation at Surfaces of Antiferromagnets

    Full text link
    Using group theory we classify the nonlinear magneto-optical response at low-index surfaces of fcc antiferromagnets, such as NiO. Structures consisting of one atomic layer are discussed in detail. We find that optical second harmonic generation is sensitive to surface antiferromagnetism in many cases. We discuss the influence of a second type of magnetic atoms, and also of a possible oxygen sublattice distortion on the output signal. Finally, our symmetry analysis yields the possibility of antiferromagnetic surface domain imaging even in the presence of magnetic unit-cell doubling.Comment: 23 pages, 10 figures incorporated. Accepted to Phys. Rev. B, scheduled for July'9

    High-Temperature Expansions of Bures and Fisher Information Priors

    Full text link
    For certain infinite and finite-dimensional thermal systems, we obtain --- incorporating quantum-theoretic considerations into Bayesian thermostatistical investigations of Lavenda --- high-temperature expansions of priors over inverse temperature beta induced by volume elements ("quantum Jeffreys' priors) of Bures metrics. Similarly to Lavenda's results based on volume elements (Jeffreys' priors) of (classical) Fisher information metrics, we find that in the limit beta -> 0, the quantum-theoretic priors either conform to Jeffreys' rule for variables over [0,infinity], by being proportional to 1/beta, or to the Bayes-Laplace principle of insufficient reason, by being constant. Whether a system adheres to one rule or to the other appears to depend upon its number of degrees of freedom.Comment: Six pages, LaTeX. The title has been shortened (and then further modified), at the suggestion of a colleague. Other minor change
    corecore