99 research outputs found

    Genome-Wide Analysis of DNA Methylation Differences in Muscle and Fat from Monozygotic Twins Discordant for Type 2 Diabetes

    Get PDF
    Background: Monozygotic twins discordant for type 2 diabetes constitute an ideal model to study environmental contributions to type 2 diabetic traits. We aimed to examine whether global DNA methylation differences exist in major glucose metabolic tissues from these twins. Methodology/Principal Findings: Skeletal muscle (n = 11 pairs) and subcutaneous adipose tissue (n = 5 pairs) biopsies were collected from 53-80 year-old monozygotic twin pairs discordant for type 2 diabetes. DNA methylation was measured by microarrays at 26,850 cytosine-guanine dinucleotide (CpG) sites in the promoters of 14,279 genes. Bisulfite sequencing was applied to validate array data and to quantify methylation of intergenic repetitive DNA sequences. The overall intra-pair variation in DNA methylation was large in repetitive (LINE1, D4Z4 and NBL2) regions compared to gene promoters (standard deviation of intra-pair differences: 10% points vs. 4% points, P<0.001). Increased variation of LINE1 sequence methylation was associated with more phenotypic dissimilarity measured as body mass index (r = 0.77, P = 0.007) and 2-hour plasma glucose (r = 0.66, P = 0.03) whereas the variation in promoter methylation did not associate with phenotypic differences. Validated methylation changes were identified in the promoters of known type 2 diabetes-related genes, including PPARGC1A in muscle (13.9+/-6.2% vs. 9.0+/-4.5%, P = 0.03) and HNF4A in adipose tissue (75.2+/-3.8% vs. 70.5+/-3.7%, P<0.001) which had increased methylation in type 2 diabetic individuals. A hypothesis-free genome-wide exploration of differential methylation without correction for multiple testing identified 789 and 1,458 CpG sites in skeletal muscle and adipose tissue, respectively. These methylation changes only reached some percentage points, and few sites passed correction for multiple testing. Conclusions/Significance: Our study suggests that likely acquired DNA methylation changes in skeletal muscle or adipose tissue gene promoters are quantitatively small between type 2 diabetic and non-diabetic twins. The importance of methylation changes in candidate genes such as PPARGC1A and HNF4A should be examined further by replication in larger samples

    The politicisation of evaluation: constructing and contesting EU policy performance

    Get PDF
    Although systematic policy evaluation has been conducted for decades and has been growing strongly within the European Union (EU) institutions and in the member states, it remains largely underexplored in political science literatures. Extant work in political science and public policy typically focuses on elements such as agenda setting, policy shaping, decision making, or implementation rather than evaluation. Although individual pieces of research on evaluation in the EU have started to emerge, most often regarding policy “effectiveness” (one criterion among many in evaluation), a more structured approach is currently missing. This special issue aims to address this gap in political science by focusing on four key focal points: evaluation institutions (including rules and cultures), evaluation actors and interests (including competencies, power, roles and tasks), evaluation design (including research methods and theories, and their impact on policy design and legislation), and finally, evaluation purpose and use (including the relationships between discourse and scientific evidence, political attitudes and strategic use). The special issue considers how each of these elements contributes to an evolving governance system in the EU, where evaluation is playing an increasingly important role in decision making

    Attendance in a national screening program for diabetic retinopathy:a population-based study of 205,970 patients

    Get PDF
    AIMS: A nationwide diabetic retinopathy (DR) screening program has been established in Denmark since 2013. We aimed to perform an evaluation of adherence to DR screenings and to examine whether non-adherence was correlated to DR progression. METHODS: The population consisted of a register-based cohort, who participated in the screening program from 2013 to 2018. We analyzed age, gender, marital status, DR level (International Clinical DR severity scale, none, mild-, moderate-, severe non-proliferative DR (NPDR) and proliferative DR (PDR)), comorbidities and socioeconomic factors. The attendance pattern of patients was grouped as either timely (no delays > 33%), delayed (delays > 33%) or one-time attendance (unexplained). RESULTS: We included 205,970 patients with 591,136 screenings. Rates of timely, delayed and one-time attendance were 53.0%, 35.5% and 11.5%, respectively. DR level at baseline was associated with delays (mild-, moderate-, severe NPDR and PDR) and one-time attendance (moderate-, severe NPDR and PDR) with relative risk ratios (RRR) of 1.68, 2.27, 3.14, 2.44 and 1.18, 2.07, 1.26, respectively (P < 0.05). Delays at previous screenings were associated with progression to severe NPDR or PDR (hazard ratio (HR) 2.27, 6.25 and 12.84 for 1, 2 and 3+ delays, respectively). Any given delay doubled the risk of progression (HR 2.28). CONCLUSIONS: In a national cohort of 205,970 patients, almost half of the patients attended DR screening later than scheduled or dropped out after first screening episode. This was, in particular, true for patients with any levels of DR at baseline. DR progression in patients with delayed attendance, increased with the number of missed appointments

    Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity

    Get PDF
    Objective: Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. Methods: We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. Results: We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Conclusions: Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Keywords: O-GlcNAc signaling, Type 2 diabetes, N-acetyl-d-glucosamine, Tissue cross talk, Epigenetic regulation of Il15 transcription, Insulin sensitivit
    • …
    corecore