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OBJECTIVE—Insulin resistance in skeletal muscle is a major
risk factor for type 2 diabetes in women with polycystic ovary
syndrome (PCOS). However, the molecular mechanisms under-
lying skeletal muscle insulin resistance and the insulin-sensitiz-
ing effect of thiazolidinediones in PCOS in vivo are less well
characterized.

RESEARCH DESIGN AND METHODS—We determined mo-
lecular mediators of insulin signaling to glucose transport in
skeletal muscle biopsies of 24 PCOS patients and 14 matched
control subjects metabolically characterized by euglycemic-hy-
perinsulinemic clamps and indirect calorimetry, and we exam-
ined the effect of 16 weeks of treatment with pioglitazone in
PCOS patients.

RESULTS—Impaired insulin-mediated total (Rd) oxidative and
nonoxidative glucose disposal (NOGD) was paralleled by re-
duced insulin-stimulated Akt phosphorylation at Ser473 and
Thr308 and AS160 phosphorylation in muscle of PCOS patients.
Akt phosphorylation at Ser473 and Thr308 correlated positively
with Rd and NOGD in the insulin-stimulated state. Serum free
testosterone was inversely related to insulin-stimulated Rd and
NOGD in PCOS. Importantly, the pioglitazone-mediated improve-
ment in insulin-stimulated glucose metabolism, which did not fully
reach normal levels, was accompanied by normalization of insulin-
mediated Akt phosphorylation at Ser473 and Thr308 and AS160
phosphorylation. AMPK activity and phosphorylation were similar
in the two groups and did not respond to pioglitazone in PCOS
patients.

CONCLUSIONS—Impaired insulin signaling through Akt and
AS160 in part explains insulin resistance at the molecular level in
skeletal muscle in PCOS, and the ability of pioglitazone to
enhance insulin sensitivity involves improved signaling through
Akt and AS160. Moreover, our data provide correlative evidence
that hyperandrogenism in PCOS may contribute to insulin resis-
tance. Diabetes 57:357–366, 2008

P
olycystic ovary syndrome (PCOS) is a common
endocrine disorder of unknown etiology charac-
terized by hyperandrogenism, anovulatory infer-
tility, and, frequently, profound insulin resistance

in premenopausal women (1). Skeletal muscle is the major
site of insulin-stimulated glucose disposal, and insulin
resistance in this tissue represents a major risk factor for
type 2 diabetes in women with PCOS (1,2). The molecular
mechanisms underlying skeletal muscle insulin resistance
in PCOS in vivo are less well characterized, but appear to
involve impaired insulin-mediated association of phos-
phatidylinositol-3 kinase (PI3K) with insulin receptor sub-
strate-1 (IRS-1) and enhanced serine (Ser) phosphoryla-
tion of the insulin receptor (IR) and IRS-1 (3–6). To what
extent these abnormalities affect downstream insulin
signaling to glucose transport in PCOS is at present
unknown.

Experimental studies have provided evidence that insu-
lin stimulation of GLUT4 translocation is dependent on
phosphorylation of the Akt substrate of 160 kDa (AS160)
(7–9). AS160 contains a Rab GTPase-activating protein
(GAP) domain, the activity of which under basal condi-
tions is sufficient to inhibit a Rab protein required for
GLUT4 translocation. Upon insulin stimulation, phosphor-
ylation of AS160 by Akt suppresses its GAP activity to a
degree that permits exocytosis of GLUT4 vesicles to the
plasma membrane. Recently, AMP-activated protein ki-
nase (AMPK) was identified as a potential upstream kinase
for AS160 in skeletal muscle, suggesting that AS160 may
be a convergent point for different stimuli regulating
GLUT4 translocation and glucose transport (10–12). Im-
paired insulin-mediated phosphorylation of Akt Thr308
and AS160 has been reported in skeletal muscle of nono-
bese type 2 diabetic patients (13). Most studies, however,
have failed to demonstrate impaired insulin action at the
level of Akt in muscle of type 2 diabetic patients and their
first-degree relatives (FDRs) (14–20). Similarly, no studies
have shown abnormal muscle AMPK activity under basal
conditions in type 2 diabetic patients compared with
weight-matched control subjects (21–23). Nevertheless,
abnormalities in AMPK, Akt, or AS160 in muscle could
contribute to insulin resistance in women with PCOS.

Treatment of PCOS with thiazolidinediones (TZDs) im-
proves peripheral insulin sensitivity and ovulation rates
(2,24). The insulin-sensitizing effect of TZD is in part
mediated by activation of peroxisome proliferator–acti-
vated receptor (PPAR)-�, which is highly abundant in
adipose tissue (25), and may involve increased adiponec-
tin secretion from adipocytes (26). Thus, recombinant
adiponectin stimulates fatty acid oxidation and glucose
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transport by activation of AMPK in rodent muscle (26).
Treatment with rosiglitazone increased muscle AMPK
activity in insulin-resistant rats (27) and type 2 diabetic
patients (28), but the role of plasma adiponectin was not
examined. Other studies of human skeletal muscle have
indicated that the insulin-sensitizing effect of adiponectin
is in part exerted by improved insulin signaling (29,30).
Accordingly, treatment with different TZDs improved in-
sulin action on IRS-1 tyrosine phosphorylation, IRS-1–
associated PI3K activity, and Akt activity/phosphorylation
in muscle of type 2 diabetic patients and their FDRs
(31–33). Whether pioglitazone improves insulin sensitivity
in PCOS by affecting either the AMPK pathway or phos-
phorylation of Akt and AS160 remains to be elucidated.

The aim of the present study was to investigate the
molecular mechanisms of insulin resistance in skeletal
muscle of women with PCOS, and the mechanisms by
which treatment with pioglitazone improves insulin sensi-
tivity. We studied AMPK and Akt, two major regulators of
glucose transport, likely through AS160, in skeletal muscle
of women with PCOS and well-matched healthy control
subjects.

RESEARCH DESIGN AND METHODS

Subjects and design. Twenty-four obese women of fertile age with PCOS and
14 healthy women, matched according to age and BMI, participated in the
study (Table 1). This cohort represents all the subjects from whom skeletal
muscle biopsies were obtained during a euglycemic-hyperinsulinemic clamp
before PCOS patients were randomized in a double-blind manner to 16 weeks
of treatment with either 30 mg pioglitazone or placebo once daily, as reported
previously (2). This dose of pioglitazone is known to induce clinically relevant
effects without exposing the PCOS patients to an unnecessary high risk of side
effects. In addition to these pretreatment biopsies, another set of muscle
biopsies was obtained from 10 of the pioglitazone-treated PCOS posttreat-
ment. None of these patients experienced side effects related to pioglitazone
treatment (2). No effect on insulin-stimulated glucose metabolism or any other
parameters was observed in the placebo group (2), and therefore the effect of
placebo on muscle enzymes was not studied. Two PCOS patients had impaired
fasting glucose, but all had A1C within the normal range. Control subjects had
normal glucose tolerance, no family history of diabetes, and regular menses.
None of the participants were taking medication known to affect hormonal or
metabolic parameters. Informed consent was obtained from all subjects

before participation. The study was approved by the local ethics committee
and the Danish Medicines Agency and was performed in accordance with the
Helsinki Declaration II. The trial is registered at www.clinicaltrials.gov
(NCT00145340).

The euglycemic-hyperinsulinemic clamp studies were performed after an
overnight fast as described (2). In brief, a 2-h basal tracer equilibration period
was followed by infusion of insulin at a rate of 40 mU � m�2 � min�1 for 3 h.
This rate of insulin infusion was chosen to study insulin sensitivity and insulin
signaling in skeletal muscle during prandial-like physiological hyperinsulin-
emia. The studies were combined with indirect calorimetry, and rates of total
glucose disposal (Rd), glucose and lipid oxidation, and nonoxidative glucose
disposal (NOGD) were calculated as described (2). Muscle biopsies were
obtained from the vastus lateralis muscle immediately before and after the 3-h
insulin infusion period using a modified Bergström needle with suction under
local anesthesia. Muscle samples were immediately blotted free of blood, fat,
and connective tissue and frozen in liquid nitrogen within 30 s. Serum levels
of insulin, free testosterone, and plasma glucose, triglyceride, and free fatty
acids (FFAs) were assayed as described (2). Plasma adiponectin was analyzed
as described by Frystyk et al. (34). Percent body fat was determined by the
bioimpedance method.
Muscle homogenate preparation. Lysates and homogenates were prepared
from 70 mg (wet wt) muscle, which was freeze-dried; dissected free of visible
fat, blood, and connective tissue; and homogenized as described previously
(35) Homogenates rotated end-over-end at 4°C for 1 h. Lysates were prepared
from the homogenates by centrifuging 25 min at 17,500g and 4°C. Total protein
content was analyzed by the bicinchoninic acid method (Pierce, Rockford, IL).
Unless stated specifically, all chemicals were of analytic grade from Sigma-
Aldrich (Denmark).
Total crude membranes. For determination of total GLUT4 content, total
crude membranes were obtained from 30 mg (wet wt) muscle homogenized in
sucrose buffer (250 mmol/l sucrose, 30 mmol/l HEPES, 2 mmol/l EGTA, 40
mmol/l NaCl, 2 mmol/l phenyl-methylsulfonyl fluoride [PMSF], pH 7.4). The
homogenates were cleared by centrifugation at 1,000g for 5 min, and total
crude membranes were obtained as the pellet after centrifugation at 190,000g

(90 min, 4°C).
SDS-PAGE and Western blotting. Muscle lysate or homogenate proteins
were separated using 5, 7.5, or 10% Tris-HCl gels (Biorad, Denmark) and were
transferred (semi-dry) to polyvinylidene difluoride (PVDF) membranes (Im-
mobilion Transfer Membrane; Millipore A/S, Denmark). Standard Western
blotting procedures were used for detecting specific proteins as described
previously (35). Following detection and quantification using a charge-
coupled device (CCD) image sensor and 1D software (Kodak Image Station,
2000MM; Kodak, Denmark), protein content and phosphorylation level were
expressed in arbitrary units relative to a standard curve obtained by loading a
human skeletal muscle control sample in various amounts on each separate
gel.

TABLE 1
Clinical and metabolic characteristics of PCOS patients and control subjects

Control subjects PCOS patients PCOS pretreatment PCOS posttreatment

n 14 24 10 10
Age (years) 33.8 � 2.1 31.6 � 1.3 30.3 � 2.1
Weight (kg) 98.2 � 3.8 96.2 � 2.2 96.4 � 2.5 95.5 � 2.8
BMI (kg/m2) 33.7 � 1.7 33.3 � 0.9 33.2 � 0.9 33.0 � 1.1
Body fat (%) 40.5 � 1.6 40.3 � 1.1 39.1 � 1.3 39.8 � 1.4
Plasma triglycerides (mmol/l) 0.86 � 0.11 1.66 � 0.18* 1.43 � 0.22 1.15 � 0.16
Serum free testosterone (mg/l) 0.025 � 0.003 0.048 � 0.005* 0.053 � 0.009 0.048 � 0.007
Plasma glucose (mmol/l) 5.6 � 0.1 5.9 � 0.1 5.9 � 0.2 5.6 � 0.1
Serum insulin (pmol/l) 51 � 6 104 � 12** 125 � 22 69 � 11††
Plasma FFA basal (mmol/l) 0.47 � 0.04 0.44 � 0.03 0.45 � 0.05 0.41 � 0.05
Rd basal (mg � min�1 � m�2) 72 � 3 77 � 2 75 � 3 76 � 4
Rd clamp (mg � min�1 � m�2) 297 � 23 150 � 9* 138 � 18 188 � 25†
Glucose oxidation basal (mg � min�1 � m�2) 52 � 8 42 � 3 46 � 5 43 � 10
Glucose oxidation clamp (mg � min�1 � m�2) 141 � 17 86 � 5* 80 � 10 101 � 12††
Lipid oxidation basal (mg � min�1 � m�2) 33 � 3 39 � 1 38 � 1 40 � 4
Lipid oxidation clamp (mg � min�1 � m�2) 1 � 6 23 � 2* 24 � 4 16 � 5
NOGD basal (mg � min�1 � m�2) 20 � 7 35 � 3 30 � 5 34 � 9
NOGD clamp (mg � min�1 � m�2) 157 � 22 65 � 6* 58 � 12 87 � 14†

Data are means � SEM. Differences between control subjects and all PCOS patients before randomization to TZD as well as the effect of 16
weeks of treatment with 30 mg pioglitazone once daily in 10 PCOS patients were tested using one-way or two-way ANOVA for repeated
measures. The 38 study subjects represent a subcohort of a total of 44 subjects for which data have been presented previously (2). *P � 0.001
and **P � 0.01 vs. PCOS patients; †P � 0.01 and ††P � 0.05 vs. pretreatment.
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Antibodies used for Western Blotting. AMPK subunit isoforms �1, �2, and
�3 were as described previously (23); �-AMPK Thr172 and AS160 (PAS)
phosphorylation (nos. 2531 and 9611; Cell Signaling Technology, Beverly,
MA); AS160 protein (no. Ab24469 Abcam plc; Cambridge, U.K.); GLUT4 (no.
AB1346, Chemicon, Temecula, CA); Akt1/2 protein (no. 06-558 Upstate Bio-
technology, Waltham, MA). Secondary antibodies used were horseradish
peroxidase–conjugated antibodies (P0448, P0447, and P0163) from DAKO,
Denmark.
IRS-1–associated PI3K activity. IRS-1–associated PI3K activity was mea-
sured in IRS-1 immunoprecipitated from muscle lysates (400 �g protein) using
an anti–IRS-1 antibody raised against the COOH terminus of IRS-1 provided by
Dr. K. Siddle (Cambridge University, U.K.) (36). PI3K assay (30°C for 20 min)
was performed as described previously (37).
Microtiter plate assay for measuring Akt phosphorylation. Phosphory-
lation of Akt on Ser473 and Thr308 was measured by a microtiter-based assay
according to the procedure described by the manufacturer (Biosource Eu-
ropa, Belgium). For the Akt Ser473 and Thr308 assays, 120 and 200 �g of
homogenate protein, respectively, was used for capturing Akt protein. Tests
were performed on both recombinant Akt protein and human muscle samples
to ensure that the signal obtained was within the linear range of the assay.
AMPK activity. Isoform-specific AMPK activity was measured in the pres-
ence of 200 �mol/l AMP in immunoprecipitations from 300 �g of muscle lysate
protein using the anti-�1 and -�2 AMPK antibodies and the AMARA-peptide
(HAMARAASAAAIARRR; 100 �mol/l) as substrate as previously described
(35).
Statistical analysis. Data calculation and statistical analysis were performed
using the SSSP for Windows Version 10.0 program. Variables with skewed
distribution (insulin, triglycerides, and free testosterone) were logarithmically
transformed before statistical analyses. Results are given as means � SEM.
Statistical evaluation was performed by one- or two-way ANOVA with or
without repeated measurements using Tukey’s post-hoc testing. The relation-
ships between continuous variables were examined by calculation of Pear-
son’s correlation coefficients. Differences between groups were considered
statistically significant at P � 0.05.

RESULTS

Clinical and metabolic characteristics. As previously
reported for the entire cohort (n � 30) (2), the PCOS
patients in the present study (n � 24) had increased
fasting levels of serum insulin, free testosterone, and
plasma triglycerides (Table 1). Insulin-stimulated Rd was
50% lower in PCOS patients than in control subjects, and
this was primarily accounted for by a 60% reduction in
NOGD, but also a 39% decrease in glucose oxidation.
Moreover, the ability of insulin to suppress lipid oxidation
was impaired in PCOS patients. Treatment of PCOS sub-
jects with pioglitazone significantly reduced fasting serum
insulin (45%), and improved insulin-stimulated Rd (36%),
glucose oxidation (26%), and NOGD (50%) (Table 1).
GLUT4 protein and IRS-1–associated PI3K activity.
The content of GLUT4 protein in crude membrane extracts
of skeletal muscle was similar in PCOS patients and
control subjects (Fig. 1A). In addition, GLUT4 content did
not change in response to insulin in any groups or by
pioglitazone treatment in PCOS patients. Thus, impaired
insulin action in the PCOS patients and the improved
glucose metabolism achieved by pioglitazone were not due
to changes in GLUT4 protein content. However, this does
not exclude impaired insulin-mediated GLUT4 transloca-
tion or improvement in this in response to pioglitazone in
PCOS. Insulin increased IRS-1-associated PI3K activity
significantly in both groups, and there was no difference in
either the basal or the insulin-stimulated state (Fig. 1B). In
the subgroup of pioglitazone-treated PCOS patients, the
insulin-mediated increase in IRS-1–associated PI3K activ-
ity was not significant before, but only after, pioglitazone
treatment.
Akt signaling. Total Akt1/2 protein expression in skeletal
muscle did not differ between the groups, and it was not
affected by either insulin or pioglitazone (Fig. 2A). Basal

Akt phosphorylation at Ser473 and Thr308 was similar in
skeletal muscle of PCOS patients and control subjects
(Fig. 2B and C). Despite a significant increase in Akt
phosphorylation at Ser473 and Thr308 in response to
insulin in both groups, the effect of insulin on both sites
was significantly attenuated (40–60%) in the PCOS pa-
tients. In the subgroup of PCOS patients undergoing
pioglitazone treatment, insulin-mediated Akt phosphoryla-
tion at both Ser473 and Thr308 was restored to the levels
observed in control subjects (Fig. 2B and C). Similar
observations were done when data were adjusted for Akt
protein, although the increase in insulin-mediated Ser473
phosphorylation did not reach statistical significance (P �
0.17) (Fig. 2D and E).
AS160. The phosphorylation of AS160 was evaluated
using an antibody recognizing proteins phosphorylated in
the Akt recognition motif (R/K)X(R/K)XXS*/T*. A clear
band at �160 kDa was quantified, the identity of which
was verified by an immuno-depletion experiment using an
antibody recognizing AS160 independent of phosphoryla-
tion (Fig. 3A). AS160 protein content was not different
between the two groups and did not change in response to

FIG. 1. GLUT4 protein content, representative immunoblot (A), and
IRS-1–associated PI 3-kinase activity (B) in 14 control subjects and 24
PCOS patients and (right to the dotted line) in 10 PCOS patients
before (Pre) and after (Post) 16 weeks of treatment with pioglitazone.
Measurements were performed in skeletal muscle biopsies obtained
during the basal (�) and insulin-stimulated (f) steady-state periods of
a 3-h euglycemic-hyperinsulinemic clamp. Data are means � SEM. *P <
0.01 vs. corresponding basal values.
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either insulin or treatment with pioglitazone, except for a
small decrease in the pioglitazone-treated PCOS patients
in the insulin-stimulated state (Fig. 3B). AS160 phosphor-
ylation was increased significantly by insulin in both PCOS
patients and control subjects (Fig. 3C). However, in accor-
dance with the Akt phosphorylation data, insulin-stimu-
lated AS160 phosphorylation tended (P � 0.08) to be
reduced in the PCOS patients, and after pioglitazone

treatment insulin-mediated AS160 phosphorylation tended
(P � 0.07) to be restored to the level seen in the control
subjects (Fig. 3C). When evaluating AS160 phosphoryla-
tion adjusted for AS160 protein content, these tendencies
all became statistically significant (P � 0.01 and P � 0.05,
respectively) (Fig. 3D)
AMPK. Protein levels of the two catalytic (�1 and �2)
subunits of AMPK were similar in PCOS and control

FIG. 2. Akt1/2 protein content and representative immunoblot (A), phosphorylation of Akt at Ser473 (B) and Thr308 (C), and phosphorylation
of Akt at Ser473 (D) and Thr308 per protein (E) in 14 control subjects and 24 PCOS patients and (right to the dotted line) in 10 PCOS patients
before (Pre) and after (Post) 16 weeks of treatment with pioglitazone. Measurements were performed in skeletal muscle biopsies obtained during
the basal (�) and insulin-stimulated (f) steady-state periods of a 3-h euglycemic-hyperinsulinemic clamp. Data are means � SEM. *P < 0.01 vs.
corresponding basal values; †P < 0.01 vs. insulin-stimulated values in control subjects; §P < 0.01 vs. pretreatment insulin-stimulated values.
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subjects (Fig. 4A) and did not change in response to
pioglitazone treatment (Fig. 4B). Surprisingly, protein con-
tent of the regulatory �3 subunit of AMPK was increased in
PCOS patients (Fig. 4A), and it remained elevated in the
pioglitazone-treated subgroup of PCOS subjects (Fig. 4B).
However, measurements of AMPK activity as either
Thr172 phosphorylation on �-AMPK or as the activity
associated with the �1 or �2 catalytic AMPK isoforms
were not different in the PCOS patients compared with
control subjects, and they did not change in response to
insulin or pioglitazone treatment, except for a nonsignifi-
cant (P � 0.054) insulin-mediated decrease in �1-AMPK
activity in control subjects (Fig. 5A–C). To examine
whether the absent response was explained by failure of
pioglitazone to increase adiponectin levels, we determined
plasma adiponectin and observed a more than twofold
increase in plasma adiponectin (6.8 � 0.8 vs. 14.6 � 2.1

mg/l; P � 0.001) after pioglitazone treatment in PCOS
patients.
Akt signaling in relation to AS160 and glucose me-
tabolism. In the total population, Akt phosphorylation at
Ser473 and Thr308 correlated positively with AS160 phos-
phorylation during insulin stimulation (Fig. 6A and B). The
association between Akt Ser473 and AS160 phosphoryla-
tion was significant in both PCOS (r � 0.44, P � 0.04) and
control subjects (r � 0.65, P � 0.02), whereas the associ-
ation between Akt Thr308 and AS160 phosphorylation was
significant only in PCOS subjects (r � 0.54, P � 0.009).
Insulin-stimulated Akt phosphorylation at Thr308 and
Ser473 in skeletal muscle correlated strongly with insulin-
stimulated Rd and NOGD (Fig. 6C and F). The association
between insulin-stimulated Rd and AS160 phosphorylation
did not reach statistical significance (r � 0.30, P � 0.08),
but insulin-stimulated AS160 phosphorylation was posi-

FIG. 3. A: Immunoprecipitation (IP) of AS160 followed by immunoblotting (IB) using either anti–phospho-Akt substrate (PAS) (left) or anti
AS160 antibodies (right) on nonstimulated (top) or insulin-stimulated (bottom) human muscle biopsies from a healthy individual. Samples of the
incoming lysate (Pre), the remnant lysate after IP (Post), and the immunoprecipitate were loaded. AS160 protein content (B), AS160
phosphorylation (C), and AS160 phosphorylation per AS160 protein (D) in 14 control subjects and 24 PCOS patients and (right to the dotted line)
in 10 PCOS patients before (Pre) and after (Post) 16 weeks of treatment with pioglitazone. Measurements were performed in skeletal muscle
biopsies obtained during the basal (�) and insulin-stimulated (f) steady-state periods of a 3-h euglycemic-hyperinsulinemic clamp. Represen-
tative immunoblots are shown above B and C. Data are means � SEM. *P < 0.01 vs. corresponding basal values; †P < 0.01 vs. insulin-stimulated
values in control subjects; §P < 0.05 vs. pretreatment insulin-stimulated values.
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tively associated with NOGD (r � 0.42, P � 0.01). In
control subjects, the associations between Thr308 phos-
phorylation and Rd (r � 0.81, P � 0.001) and NOGD (r �
0.76, P � 0.001) were stronger than in PCOS patients (r �
0.50, P � 0.01, and r � 0.56, P � 0.01, respectively), and in
control subjects only, Ser473 phosphorylation was posi-
tively associated with NOGD (r � 0.59, P � 0.03). No
significant relationships between insulin-stimulated glu-
cose metabolism and AS160 phosphorylation were ob-
served in the individual groups.

In 8 of 10 PCOS patients, an increase in insulin stimulation
of Rd and NOGM in response to pioglitzaone treatment was
accompanied by an increase in phosphorylation of Akt at
Ser473 and Thr308 (P � 0.05). However, there was no
univariate correlation between the magnitude by which these
measures of whole-body glucose disposal and phosphoryla-
tion of Akt increased (all r �0.25).
Hyperandrogenism in insulin resistance. To explore
the potential role of hyperandrogenism in insulin resis-

tance, we examined the relationship between serum free
testosterone and insulin-stimulated glucose metabolism
and signaling through Akt and AS160. In the total popula-
tion, serum free testosterone was negatively associated
with insulin-stimulated Rd (r � �0.47, P � 0.003), NOGD
(r � �0.45, P � 0.005), Akt phosphorylation at Ser473 (r �

FIG. 4. Protein content of the �1, �2, and �3 subunit of AMPK in
skeletal muscle biopsies obtained under basal conditions in 14 control
subjects (�) and 24 PCOS patients (f) (A) and in 10 PCOS patients
before (�) and after (f) 16 weeks of treatment with pioglitazone (B).
Representative immunoblots are shown above each graph. Data are
means � SEM. *P < 0.01 vs. control subjects. C, control subjects; P,
PCOS; B, before; A, after.

FIG. 5. AMPK Thr172 phosphorylation and representative immunoblot
(A), AMPK �1 activity (B), and AMPK �2 activity (C) in 14 control
subjects and 24 PCOS patients and (right to the dotted line) in 10
PCOS patients before (Pre) and after (Post) 16 weeks of treatment
with pioglitazone. Measurements were performed in skeletal muscle
biopsies obtained during the basal (�) and insulin-stimulated (f)
steady-state periods of a 3-h euglycemic-hyperinsulinemic clamp. Data
are means � SEM.
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�0.37, P � 0.03) and Thr308 (r � �0.38, P � 0.02), and
AS160 phosphorylation (r � �0.38, P � 0.03). In PCOS
patients, the association between free testosterone and
insulin-stimulated Rd (r � �0.42, P � 0.04), and NOGD
(r � �0.47, P � 0.02) remained significant, whereas no
significant associations were found in control subjects.

DISCUSSION

In the present study, we investigated AMPK and insulin
signaling to AS160 in skeletal muscle to define molecular
mechanisms of insulin resistance in PCOS, as well as
potential effects of 16 weeks of pioglitazone treatment on
these signaling components. We provide evidence that

FIG. 6. The relationship of Akt Ser473 and Thr308 phosphorylation with AS160 phosphorylation in skeletal muscle (A and B) and rates (mg � m�2

� min�1) of total glucose disposal (Rd clamp) (C and D) and nonoxidative glucose disposal (NOGD) (E and F) measured in the insulin-stimulated
steady-state period of a 3-h euglycemic-hyperinsulinemic clamp in the total population of 14 control subjects (E) and 24 PCOS patients (F).
Pearson’s correlations coefficients for the total population are given.
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decreased insulin action on peripheral glucose metabolism
is associated with impaired insulin signaling at the level of
Akt and AS160 in women with PCOS. Moreover, we
demonstrate that improved insulin signaling through Akt
and AS160, in part, contributes to the insulin-sensitizing
effect of pioglitazone treatment in PCOS. In contrast,
AMPK activity was normal in skeletal muscle of women
with PCOS, and it did not respond to pioglitazone despite
a twofold increase in plasma adiponectin.

In cultured fibroblast from PCOS patients, impaired
insulin action on glycogen synthesis was associated with
increased basal IR Ser phosphorylation and decreased
insulin-stimulated IR Tyr phosphorylation (3,38), whereas
IRS-1–associated PI3K activity and mitogenic action of
insulin were intact (38). In cultured human skeletal muscle
cells, which express GLUT4, normal insulin-stimulated IR
Tyr phosphorylation and IRS-1–associated PI3K activity
were reported together with enhanced insulin action on
glycogen synthesis and glucose transport in PCOS (4). In
these myotubes, there was however increased basal IRS-1
Ser312 phosphorylation and enhanced mitogenic signaling
through ERK1/2 (5). Studies of skeletal muscle in vivo
have shown impaired insulin-stimulated IRS-1–associated
PI3K activity after 30 min, but no difference after 90 min of
physiological hyperinsulinemia in PCOS patients (6). In
the present study, we found no abnormalities in IRS-1–
associated PI3K activity in PCOS patients. We cannot
exclude the possibility that we missed a transient lower
IRS-1–associated PI3K activity. On the other hand, the
PCOS and control subjects studied by Dunaif et al. (6)
were morbidly obese, which may have contributed to a
difference in IRS-1–associated PI3K activity. Studies of
human skeletal muscle have demonstrated that insulin
action on the proximal signaling components are sus-
tained for several hours (14,37). For these reasons, it is
unlikely that we missed any differences by taking the
muscle biopsies after a 180-min insulin infusion. Thus,
impaired insulin signaling through IRS-1 and PI3K in
muscle does not seem to explain the reduction in insulin-
stimulated glucose metabolism in obese PCOS patients.

Insulin signaling downstream of PI3K in skeletal muscle
in PCOS has not been reported previously. Akt is an
important mediator of insulin-stimulated GLUT4 translo-
cation and glucose transport (39), and this process seems
to be dependent on the phosphorylation of AS160 at
several sites by Akt (7–9). The most important finding of
the present study is a pronounced defect in insulin-
mediated phosphorylation of Akt at Thr308 and Ser473 and
of AS160 in muscle of PCOS patients. Most studies have
failed to demonstrate abnormal Akt activity/phosphoryla-
tion in type 2 diabetic patients, FDRs, and diabetic myo-
tubes (14–19,40). Recently, insulin-stimulated Akt and
AS160 phosphorylation was found to be normal in muscle
strips from FDRs, despite impaired glucose transport (20).
However, reduced insulin action on Akt phosphorylation
has been observed in FDRs with severe insulin resistance
(41), in nonobese type 2 diabetic patients (13), and in
subjects harboring an IR mutation (42). Thus, in certain
insulin-resistant conditions, similar defects are seen and
may even be of genetic origin. Although the defects at the
level of AS160 and Akt in PCOS are seen before the
development of type 2 diabetes and, hence, represent early
abnormalities, further studies are needed to establish
whether they are primarily of genetic or environmental
origin.

We observed a strong positive relationship between Rd

and NOGD and Akt phosphorylation during insulin stimu-
lation, whereas AS160 phosphorylation showed less tight
associations with Akt phosphorylation and insulin-stimu-
lated glucose metabolism. This may reflect the possibility
that AS160 is a substrate for multiple kinases (10–12).
Nevertheless, these findings provide correlative evidence
that Akt and AS160 phosphorylation are important medi-
ators of insulin-stimulated glucose metabolism in skeletal
muscle in vivo. In a study of nonobese type 2 diabetic
patients, impaired insulin-mediated Akt Thr308 phosphor-
ylation was associated with reduced AS160 phosphoryla-
tion in skeletal muscle (13). Thus, current available data
indicate that impaired insulin-mediated Akt phosphoryla-
tion is paralleled by attenuated AS160 phosphorylation. In
PCOS patients, reduced insulin action on Akt and AS160 in
skeletal muscle seems to be independent of obesity and
hyperglycemia. These findings may support the hypothesis
of a unique sub-phenotype of skeletal muscle insulin
resistance in PCOS (4).

The finding of impaired phosphorylation of Akt at both
Ser473 and Thr308 despite normal insulin-stimulated PI3K
activity incriminates modulators of Akt phosphorylation.
Insulin resistance is strongly associated with increased
lipid metabolites in human skeletal muscle, including
ceramides (39). Ceramide-activated protein phosphatases,
including protein phosphatase 2A (PP2A), have been
shown to inhibit Akt by dephosphorylation (43). Increased
ceramide levels were found together with impaired insu-
lin-stimulated Akt Ser473 phosphorylation in muscle from
obese subjects (44). Moreover, an impaired ability of
insulin to suppress PP2A has been found in muscle of type
2 diabetic patients (45). Studies of intramyocellular lipid
and ceramide content in PCOS are, however, unavailable,
and a potential role for these in insulin resistance in PCOS
therefore remains to be established.

The effect of TZD on insulin-signaling components in
skeletal muscle of PCOS patients has not been studied
previously. Here we report that pioglitazone improves
insulin action on Akt and AS160. Treatment with pioglita-
zone also introduced a significant effect of insulin on PI3K
activity in a subgroup of PCOS patients, but this effect was
small and really there was no increase if compared with
the total group of PCOS patients before treatment. Earlier
studies have shown similar effects of TZD on insulin-
stimulated PI3K activity and Akt phosphorylation in type 2
diabetic patients and FDRs (31–33), but a positive effect of
TZD on AS160 phosphorylation has, to our knowledge, not
been reported before. Intriguingly, a recent study con-
cluded that the insulin-sensitizing effects of rosiglitazone
are independent of enhanced insulin signaling through
PI3K/Akt/AS160 in newly diagnosed type 2 diabetes (46).
However, whether pretreatment levels of Akt and AS160
phosphorylation were reduced in these subjects was not
reported. The finding that pioglitazone normalizes the
most pronounced defects in insulin signaling may further
support a potential unique role for impaired Akt and AS160
phosphorylation in skeletal muscle insulin resistance in
PCOS. Whether the increase in AS160 and Akt phosphor-
ylation is mediated by PPAR�-dependent or -independent
effects of pioglitazone, and to what extent it involves the
twofold increase in adiponectin, warrant further studies.
There are data to support that high adiponectin may
reduce IRS-1 Ser phosphorylation (47) and increase insu-
lin-stimulated IR Tyr phosphorylation and glycogen syn-
thase activity (29,30).

Defects in Akt and AS160 phosphorylation clearly rep-
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resent pioglitazone-responsive markers of insulin resis-
tance in PCOS, but the improvement of insulin-stimulated
Rd and NOGD induced by pioglitazone only moved these
measures about a third of the way toward where the
control subjects were. This indicates that pioglitazone
does not reverse all mechanisms underlying impaired
insulin-stimulated glucose uptake in PCOS, and suggests
that factors downstream of AS160 (e.g., Rab proteins),
alternative Akt substrates, or even Akt-independent sig-
nals to GLUT4 translocation (48) could be impaired in
PCOS. Factors outside the insulin-signaling cascade and
muscle fibers (e.g., blood flow) could also be involved. The
only factor, which can be suggested from the present
study, is the levels of free androgens, which were higher in
PCOS before treatment and were not normalized by pio-
glitazone. In support of this hypothesis, a negative associ-
ation between androgen levels and insulin-stimulated
glucose metabolism in women has been reported previ-
ously (49), and in the present study, free testosterone
levels actually showed a closer inverse relationship with
insulin-mediated Rd and NOGD than with Akt and AS160
phosphorylation in PCOS before treatment. However, fur-
ther studies are needed to define the precise mechanisms
by which androgens or other as yet unknown factors not
improved by pioglitazone treatment impair insulin action
on glucose metabolism.

Evaluation of AMPK was important for two reasons.
First, AMPK was recently identified as an upstream kinase
of AS160 (10–12). Second, a positive effect of chronic
treatment with rosiglitazone on muscle AMPK activity has
been reported in rodents (27) and type 2 diabetic patients
(28). In both studies the effect was caused mainly by
increased protein levels of AMPK. Although most studies
of human skeletal muscle have been unable to detect
abnormalities in measures of AMPK activity in type 2
diabetic patients and weight-matched control subjects
(21–23), a recent study reported lower total AMPK activity
in obese subjects with and without type 2 diabetes (28).
We found, however, no difference in �2- or �1-AMPK
protein content or activity, or Thr172 phosphorylation in
PCOS patients, and no effect of prolonged pioglitazone
treatment on these parameters. In PCOS subjects, there
was a paradoxical increase in �3 protein, which was
unaffected by pioglitazone. The role of this increase, if any,
remains to be determined. However, basal AS160 phos-
phorylation is preserved in �3AMPK knockout mice (12).
Overall, our data are consistent with normal basal AS160
phosphorylation in PCOS and no response to pioglitazone
treatment. These data provide evidence that impaired
AMPK activity plays no role for insulin resistance in PCOS,
and that the insulin-sensitizing effect of pioglitazone in
PCOS does not involve improved AMPK activity. Recom-
binant adiponectin stimulates AMPK leading to improved
fatty acid oxidation and glucose transport in rodent mus-
cle (26). However, we observed no effect of pioglitazone
on AMPK despite a twofold increase in total adiponectin
levels. Adiponectin is present in plasma as a trimer,
hexamer, or high-molecular-weight (HMW) form (26), but
as reported recently, only trimers of adiponectin seem to
activate AMPK in muscle (50). However, other studies
have shown that pioglitazone increases only the secretion
of HMW adiponectin from adipocytes (51). Thus, a lack of
increase in trimers of adiponectin could explain our
findings.

In summary, the present study, to our knowledge for the
first time, demonstrates impaired insulin signaling down-

stream of PI3K at the level of Akt and AS160 in skeletal
muscle of women with PCOS. These molecular defects
were fully reverted by prolonged treatment with pioglita-
zone in parallel with an improved but less-than-full rever-
sal of insulin action on Rd and NOGD, and they in part
explain the insulin-sensitizing effect of TZDs in PCOS. In
contrast, muscle AMPK does not seem to play a role for
neither insulin resistance nor the insulin-sensitizing effect
of pioglitazone in PCOS. A role for hyperandrogenism in
the lack of ability of pioglitazone to fully revert insulin-
stimulated glucose metabolism warrants further studies.
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