111 research outputs found

    Nitrogen metabolism and remobilization during senescence

    Get PDF
    Senescence is a highly organized and well‐regulated process. As much as 75% of total cellular nitrogen may be located in mesophyll chloroplasts of C3‐plants. Proteolysis of chloroplast proteins begins in an early phase of senescence and the liberated amino acids can be exported to growing parts of the plant (e.g. maturing fruits). Rubisco and other stromal enzymes can be degraded in isolated chloroplasts, implying the involvement of plastidial peptide hydrolases. Whether or not ATP is required and if stromal proteins are modified (e.g. by reactive oxygen species) prior to their degradation are questions still under debate. Several proteins, in particular cysteine proteases, have been demonstrated to be specifically expressed during senescence. Their contribution to the general degradation of chloroplast proteins is unclear. The accumulation in intact cells of peptide fragments and inhibitor studies suggest that multiple degradation pathways may exist for stromal proteins and that vacuolar endopeptidases might also be involved under certain conditions. The breakdown of chlorophyll‐binding proteins associated with the thylakoid membrane is less well investigated. The degradation of these proteins requires the simultaneous catabolism of chlorophylls. The breakdown of chlorophylls has been elucidated during the last decade. Interestingly, nitrogen present in chlorophyll is not exported from senescencing leaves, but remains within the cells in the form of linear tetrapyrrolic catabolites that accumulate in the vacuole. The degradation pathways for chlorophylls and chloroplast proteins are partially interconnecte

    Chlorophyll breakdown in oilseed rape

    Get PDF
    Chlorophyll catabolism accompanying leaf senescence is one of the most spectacular natural phenomena. Despite this fact, the metabolism of chlorophyll has been largely neglegted until recently. Oilseed rape has been used extensively as a model plant for the recent elucidating of structures of chlorophyll catabolites and for investigation of the enzymic reactions of the chlorophyll breakdown pathway. The key reaction which causes loss of green color is catalyzed in a two-step reaction by pheophorbide a oxygenase and red chlorophyll catabolite reductase. In this Minireview, we summarize the actual knowledge about catabolites and enzymes of chlorophyll catabolism in oilseed rape and discuss the significance of this pathway in respect to chlorophyll degradation during Brassica napus seed developmen

    Stay-green protein, defective in Mendel's green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway

    Get PDF
    Type C stay-green mutants are defined as being defective in the pathway of chlorophyll breakdown, which involves pheophorbide a oxygenase (PAO), required for loss of green color. By analyzing senescence parameters, such as protein degradation, expression of senescence-associated genes and loss of photosynthetic capacity, we demonstrate that JI2775, the green cotyledon (i) pea line used by Gregor Mendel to establish the law of genetics, is a true type C stay-green mutant. STAY-GREEN (SGR) had earlier been shown to map to the I locus. The defect in JI2775 is due to both reduced expression of SGR and loss of SGR protein function. Regulation of PAO through SGR had been proposed. By determining PAO protein abundance and activity, we show that PAO is unaffected in JI2775. Furthermore we show that pheophorbide a accumulation in the mutant is independent of PAO. When silencing SGR expression in Arabidopsis pao1 mutant, both pheophorbide a accumulation and cell death phenotype, typical features of pao1, are lost. These results confirm that SGR function within the chlorophyll catabolic pathway is independent and upstream of PA

    Update on the biochemistry of chlorophyll breakdown

    Get PDF
    In land plants, chlorophyll is broken down to colorless linear tetrapyrroles in a highly conserved multi-step pathway. The pathway is termed the ‘PAO pathway', because the opening of the chlorine macrocycle present in chlorophyll catalyzed by pheophorbide a oxygenase (PAO), the key enzyme of the pathway, provides the characteristic structural basis found in all further downstream chlorophyll breakdown products. To date, most of the biochemical steps of the PAO pathway have been elucidated and genes encoding many of the chlorophyll catabolic enzymes been identified. This review summarizes the current knowledge on the biochemistry of the PAO pathway and provides insight into recent progress made in the field that indicates that the pathway is more complex than thought in the pas

    Chlorophyll breakdown in oilseed rape

    Full text link
    Chlorophyll catabolism accompanying leaf senescence is one of the most spectacular natural phenomena. Despite this fact, the metabolism of chlorophyll has been largely neglegted until recently. Oilseed rape has been used extensively as a model plant for the recent elucidating of structures of chlorophyll catabolites and for investigation of the enzymic reactions of the chlorophyll breakdown pathway. The key reaction which causes loss of green color is catalyzed in a two-step reaction by pheophorbide a oxygenase and red chlorophyll catabolite reductase. In this Minireview, we summarize the actual knowledge about catabolites and enzymes of chlorophyll catabolism in oilseed rape and discuss the significance of this pathway in respect to chlorophyll degradation during Brassica napus seed developmen

    Mechanism and Significance of Chlorophyll Breakdown

    Get PDF
    Chlorophyll breakdown is the most obvious sign of leaf senescence and fruit ripening. A multistep pathway has been elucidated in recent years that can be divided into two major parts. In the first phase, which commonly is active in higher plants, chlorophyll is converted via several photoreactive intermediates to a primary colorless breakdown product within the chloroplast. The second part of chlorophyll breakdown takes place in the cytosol and the vacuole. During this phase, the primary colorless intermediate is modified in largely species-specific reactions to a number of similar, yet structurally different, linear tetrapyrrolic products that finally are stored within the vacuole of senescing cells. To date, most of the biochemical reactions of the first phase of chlorophyll breakdown have been elucidated and genes have been identified. By contrast, mechanisms of catabolite transport and modification during the second phase are largely unknown. This review summarizes the current knowledge on the biochemical reactions involved in chlorophyll breakdown, with a special focus on the second-phase reactions and the fate of by-products that are released from chlorophyll during its breakdown

    The Arabidopsis vacuolar malate channel is a member of the ALMT family

    Get PDF
    SummaryIn plants, malate is a central metabolite and fulfills a large number of functions. Vacuolar malate may reach very high concentrations and fluctuate rapidly, whereas cytosolic malate is kept at a constant level allowing optimal metabolism. Recently, a vacuolar malate transporter (Arabidopsis thaliana tonoplast dicarboxylate transporter, AttDT) was identified that did not correspond to the well‐characterized vacuolar malate channel. We therefore hypothesized that a member of the aluminum‐activated malate transporter (ALMT) gene family could code for a vacuolar malate channel. Using GFP fusion constructs, we could show that AtALMT9 (A. thaliana ALMT9) is targeted to the vacuole. Promoter‐GUS fusion constructs demonstrated that this gene is expressed in all organs, but is cell‐type specific as GUS activity in leaves was detected nearly exclusively in mesophyll cells. Patch‐clamp analysis of an Atalmt9 T‐DNA insertion mutant exhibited strongly reduced vacuolar malate channel activity. In order to functionally characterize AtALMT9 as a malate channel, we heterologously expressed this gene in tobacco and in oocytes. Overexpression of AtALMT9‐GFP in Nicotiana benthamiana leaves strongly enhanced the malate current densities across the mesophyll tonoplasts. Functional expression of AtALMT9 in Xenopus oocytes induced anion currents, which were clearly distinguishable from endogenous oocyte currents. Our results demonstrate that AtALMT9 is a vacuolar malate channel. Deletion mutants for AtALMT9 exhibit only slightly reduced malate content in mesophyll protoplasts and no visible phenotype, indicating that AttDT and the residual malate channel activity are sufficient to sustain the transport activity necessary to regulate the cytosolic malate homeostasis

    Non-specific activities of the major herbicide-resistance gene BAR

    Get PDF
    Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops1-4. Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids1, indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes5,6. Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.Searle Scholars Progra

    Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing

    Get PDF
    Under mild abiotic-stress conditions, Arabidopsis atg mutants showed a functional stay-green phenotype which is probably caused by the lack of chloroplastic autophagy and the retrograde regulation of senescence-associated gene expressio
    • 

    corecore