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Abstract

Chlorophyll catabolism accompanying leaf senescence is one of the most spectacular natural phenomena. Despite
this fact, the metabolism of chlorophyll has been largely neglegted until recently. Oilseed rape has been used
extensively as a model plant for the recent elucidating of structures of chlorophyll catabolites and for investigation
of the enzymic reactions of the chlorophyll breakdown pathway. The key reaction which causes loss of green
color is catalyzed in a two-step reaction by pheophorbide a oxygenase and red chlorophyll catabolite reductase.
In this Minireview, we summarize the actual knowledge about catabolites and enzymes of chlorophyll catabolism
in oilseed rape and discuss the significance of this pathway in respect to chlorophyll degradation duringBrassica
napusseed development.

Abbreviations: Chl – chlorophyll; Chlide – chlorophyllide; FCC – fluorescent chlorophyll catabolite; NCC –
nonfluorescent chlorophyll catabolite; PaO – pheophorbidea oxygenase; Pheide – pheophorbide; pFCC – primary
fluorescent chlorophyll catabolite; RCC – red chlorophyll catabolite;RCCR – red chlorophyll catabolite reductase

Introduction

The disappearance of chlorophyll (Chl) and the emer-
gence of autumnal colors belong to the most manifest
and fascinating natural phenomena. In spite of its high
visibility, biochemical information on the breakdown
of Chl in plants has been very scarce until recently
(Brown et al. 1991). Only in the last decade, some
of the mysteries of Chl catabolism in higher plants
were solved (Kräutler et al. 1991; Matile et al. 1996;
Kräutler and Matile 1999).

Seasonal appearances and disappearances of the
green pigments probably are the most visual sign of
life on earth. An estimated amount of more than 109

tons of Chl are biosynthesized and degraded every
year on earth (Brown et al. 1991). Considerable know-
ledge has accumulated concerning the biosynthesis of
the Chls (Von Wettstein et al. 1995), in contrast to the
lack of information concerning the fate of the green
plant pigments (Brown et al. 1991). Still recently the
Chls were suspected to disappear ‘without leaving a

trace’ (Matile 1987). As we know now, the major
Chl catabolites are colorless, in contrast to what was
generally expected. This was the main reason also,
why they had remained undetected. By analogy to
heme breakdown in animals, an oxygenolytic open-
ing of the porphinoid macrocycle of the Chls was
commonly considered as the key step in Chl break-
down (Brown et al. 1991). Based on experiences on
the reactivity of chlorins towards electrophilic agents
(Woodward and Skaric 1961; Brown et al. 1980,
1991), it was assumed, that opening of the macroring
would occur at the ‘western’δ-meso position (next to
the peripherically reduced ring D).

The discovery of chlorophyllase and the enzymic
hydrolysis of Chl to chlorophyllide (Chlide) and
phytol (see Figure 1) by A. Stoll (Willstätter and
Stoll 1913) provided an early (isolated) contribution
to our knowledge on Chl breakdown. The lipophilic
phytol anchor is crucial for the insertion of the green
pigment–protein complexes into the thylakoid mem-
branes of chloroplasts. The loss of phytol sets the stage
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Figure 1. Structural formulae: top: Chla (1a, R=CH3), Chl b (1b,
R= CH=O); bottom: Chlidea (2a, R=CH3), Chlide b (2b, R=
CH=O) and phytol.

for further enzymic degradation of both Chlide and the
apoproteins (Matile 1992; Kräutler and Matile 1999;
Matile et al. 1999).

Nongreen Chl catabolites were first discovered in
extracts of senescent leaves of a nonyellowing geno-
type of the grassFestuca pratensis(Matile et al. 1987).
Pink and rust-colored compounds (termed ‘rusty pig-
ments’) appeared on the plates as chemical degrada-
tion products from the colorless catabolites. Similar
compounds were found in primary leaves of barley
(Bortlik et al. 1990; Peisker et al. 1990), when forced
to degreen in permanent darkness. The structure of
a predominant compound, of ‘rusty pigment 14’ (3),
was determined by a combination of modern spec-
troscopic methods and unambiguously identified3 as
a colorless catabolite of Chla (1a) (Kräutler et al.
1991, 1992). This work revealed the first structure of
a nongreen Chl catabolite from plants and gave clues
as to the major structural changes occurring in the
degradation of Chl during plant senescence (Kräut-
ler et al. 1991). It indicated, among other things, an
oxygenolytic opening of the porphinoid macroring to
have occurred, not at theδ-position, but rather at the
‘northern’α-meso position.

Figure 2. Constitutional formulae of nonfluorescent Chl catabol-
ites (NCCs) from degreened plants. Left:Hv-NCC-1 (3) from
barley; Right: Bn-NCC-1 (4, X=C(O)CH2CO2H), Bn-NCC-2 (5,
X=β-glucopyranosyl) andBn-NCC-3 (6, X=H), all from oilseed
rape.

Structures of Chl catabolites from the cotyledons
of oilseed rape

In recent years, oilseed rape has been used extens-
ively for investigations of the biochemistry of Chl
breakdown. This model plant is attractive for several
reasons. It is closely related toArabidopsis thaliana
which is largely unsuitable for biochemical investiga-
tions and, in addition, oilseed rape is a major crop and
a highly manipulable organism.

Colorless and nonfluorescent Chl catabolites (NCCs)

The cotyledons of the dicot oilseed rape (canola,
Brassica napus) were found to be a rich source for
colorless catabolites, when allowed to senesce in
permanent darkness and also under natural growth
conditions. Under these conditions in degreened coty-
ledons of oilseed rape, three colorless and nonfluor-
escent Chl-catabolites could be detected (termedBn-
NCCs) (Ginsburg and Matile 1993). These threeBn-
NCCs (Bn-NCC-1 (4), Bn-NCC-2 (5), Bn-NCC-3 (6))
were found to account for practically all of the Chl
broken down in the cotyledons of oilseed rape. They
were isolated for structural analysis and by thorough
spectroscopic analyzes (fast atom bombardment mass
spectrometry and nuclear magnetic resonance spectro-
scopy) they were shown to all have the same basic
structure, asHv-NCC-1 (3) from barley (Mühlecker
et al. 1993; Mühlecker and Kräutler 1996). TheBn-
NCCs differ fromHv-NCC-1 only by the peripheral
(re)functionalization. Most notably, theBn-NCCs
proved to be linear tetrapyrroles which were again de-
rived from Chla (1a) by an oxygenolytic ring opening
at theα-meso position (see Figure 2) (Mühlecker et al.
1993; Mühlecker and Kräutler 1996).



139

In the meantime, compounds with spectral char-
acteristics similar to those of the NCCs from bar-
ley and from canola were discovered in the autumn
leaves of sweet gum (Liquidambar styraciflua) (It-
urraspe et al. 1995) andCercidiphyllum japonicum
(Curty and Engel 1996). Thus, all NCCs isolated
so far from a variety of degreened plants represent
linear tetrapyrroles of uniform basic build-up (Fig-
ure 2) and relate to Chla (1a) rather than to Chlb
(1b) (Matile and Kräutler 1995). In addition, these
structures (of the catabolites3–6) contradicted the rel-
evance (suspected earlier) (Schoch et al. 1984; Brown
et al. 1991) of enzymic transformations at the sub-
stituted cyclopentanone unit of the Chls, except for
that of an enzymic hydrolysis of the methyl ester
function (Shioi et al. 1996b). This latter hydrolysis
producesβ-keto carboxylic acids, known to be prone
to decarboxylation. Accordingly, the decarboxylation
products (pyropheophorbides), that were identified oc-
casionally (Brown et al. 1991; Shioi et al. 1996b), may
arise from nonenzymic transformations (Mühlecker
and Kräutler 1996).

Fluorescent Chl catabolites (FCCc)

Analysis of extracts of senescent cotyledons ofB.
napus, when rates of Chl breakdown were high, re-
vealed the intermediary occurence of tiny amounts of
fluorescent compounds. provisionally named ‘fluor-
escing Chl catabolites’ (FCCs), because14C-labeling
identified them as porphyrin derivatives (Matile et al.
1992; Ginsburg et al. 1994). As none of these com-
pounds accumulatedin vivo, they were considered to
represent early or even primary products of porphyrin
cleavage. Anin vitro system, based on senescent coty-
ledons of oilseed rape, was established for the purpose
of the preparation of the ‘primary’ FCC, in a quantity
sufficient for structural analysis (Ginsburg et al. 1994;
Hörtensteiner et al. 1995). An extract of the chloro-
plast membranes from senescent cotyledons of oilseed
rape containing the enzymic oxygenating activity was
used for the conversion of pheophorbidea (7a, Pheide
a) into the major (less polar) FCC, originally named
Bn-FCC-2 (8). From about 2 mg of Pheidea (7a)
about 0.1 mg ofBn-FCC-2 were producedin vitro,
so that the constitution of8 could again be elucid-
ated by the help of modern spectroscopy (Mühlecker
et al. 1997). The structure ofBn-FCC-2 (8) indicated
it to be derived rather directly from7a, formally by
addition of one molequivalent of dioxygen and two
molequivalents of dihydrogen. The structure suppor-

Figure 3. Left: Common constitutional formula of the fluorescing
Chl catabolites pFCC (8) and 1-epi-pFCC (9): right: structural
formula of RCC (10).

ted the view that8 could be considered the ‘primary’
FCC (and therefore now is called pFCC) (Mühlecker
et al. 1997). In the meantime, another primary FCC (9)
was isolated from sweet pepper (Capsicum annuum)
in an amount sufficient for analysis of its structure.
The two catabolites (8 and9) could be shown to have
the same constitution, i.e. to be stereoisomers of each
other, that differ only in the absolute configuration at
C(1), the chiral center newly introduced by a reduc-
tion step (Mühlecker et al. 2000) (i.e.9 = 1-epi-pFCC,
Figure 3).

Another important information on the pathway of
Chl breakdown came about by the finding that Pheide
a (7a), but not Pheideb (7b), accumulated in the
absence of molecular oxygen (Vicentini et al. 1995),
hinting at the involvement of molecular oxygen and
7aas common substrates in an oxidative enzymic step
during Chl breakdown. In line with this, the putative
oxygenase, turned out to be remarkably specific for7a,
with 7b as competitive inhibitor (Hörtensteiner et al.
1995). These findings suggested that Chlb (1b) might
be reduced to Chla (1a) in the course of degreening
and indeed, in the meantime, the existence of a Chlb
to Chla conversion has been demonstrated (see below)
(Ito et al. 1996; Scheumann et al. 1996).

Accordingly, Pheidea (7a) appeared to be the
last intermediate with an intact chlorin macrocycle in
senescence-induced Chl breakdown in oilseed rape.
Between7a and theBn-NCCs there still existed a
large gap, for which the fluorescing catabolite pFCC
(8) provided a first structural link (Mühlecker et
al. 1997): it indicated the oxygenolytic opening of
the macrocycle of7a and the saturation of two of
its three other meso-positions to precede the other
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(re)functionalization reactions (minimally) involved in
the path from the Chls towards the NCCs.

A red tetrapyrrolic catabolite as elusive intermediate
in Chl breakdown

Considering the structure of pFCC (8) and the other
findings outlined (Vicentini et al. 1995; Mühlecker
et al. 1997), it appeared likely that the oxygenolytic
cleavage of the ring would occur first and would be
followed by a reduction step, leading to saturation of
the ‘western’δ-meso position. Accordingly, the red
tetrapyrrole (10, RCC) appeared likely as a direct pre-
cursor of8 and, therefore, as a putative intermediate
in Chl breakdown (Mühlecker et al. 1997). There-
fore, 10 would be similar (but not identical) to the
red bilinones which had been found to be excreted
as final degradation product of the Chls in the green
algaChlorella protothecoides(Oshio and Hase 1969;
Engel et al. 1991). Fortunately, by partial degradation
of 1a in a sequence of five chemical steps and having
as the key step an photooxygenolytic opening of the
porphinoid macrocycle of a cadmium pheophorbidate
the red tetrapyrrole10 could be prepared (Kräutler et
al. 1997). The red compound10 was then available
for tracing experiments, in which10 could be shown
to be identical with RCC, obtained from7a by en-
zymic oxygenolysis. This was demonstrated by the
incubation of thoroughly washed membrane extracts
from chloroplasts of degreened cotyledons of canola
and under suitablein vitro conditions, from7a the elu-
sive RCC could be produced in traces, identified with
the synthetic10 by HPLC (Rodoni et al. 1997a). In
addition, incubation of chemically prepared10 with a
preparation of stroma proteins from chloroplasts resul-
ted in the formation of three FCCs (two of which had
identical chromatographic characteristics as8 and9),
provided that reduced ferredoxin was furnished under
anaerobic conditions (Rodoni et al. 1997b).

During senescence in degreened plants, RCC is
formed in trace amounts only and in an enzyme bound
state. Formally, RCC arises from Pheide a by addition
of one equivalent each of dioxygen and dihydrogen.
Reduction of RCC (by addition, formally, of one
equivalent of dihydrogen) converts it into either one
of the stereoisomeric pFCCs (Mühlecker et al. 1997;
Rodoni et al. 1997b). Accordingly, the enzyme in the
stroma fraction is a reductase, which converts RCC
into pFCC and therefore was named RCC reductase
(RCCR).

The enzymic activity in washed chloroplast mem-
branes from senescent cotyledons converts Pheidea
(7a) in traces into RCC (10), an effectively irreversible
oxygenolytic cleavage of the porphinoid macroring in-
volving molecular oxygen and apparently inhibited by
the oxygenation product (Rodoni et al. 1997a). The
minimal requirements of this transformation could
be achieved either by a monooxygenase or by the
joint action of a dioxygenase and a reductase. As
is delineated in more detail below, a single enzyme
is indicated to achieve the conversion of Pheidea
(7a) into (a bound form of) RCC (10), an oxygenase
termed pheophorbidea oxygenase (PaO) (Rodoni et
al. 1997a).

The Chl catabolic pathway

Work on Chl catabolism in rape and other species,
such as barley orF. pratensis(for recent reviews see
Hörtensteiner 1999; Kräutler and Matile 1999; Matile
et al. 1999), has lead to the establishment of a Chl cata-
bolic pathway as depicted in Figure 5. In the following
paragraphs, individual reactions are outlined in detail
with keeping a focus on data available from canola.

Chlorophyllase

Chlorophyllase, first described by Stoll (Willstätter
and Stoll 1913), catalyzes the hydrolysis of Chl (1) to
Chlide (2) and phytol. Phytol remains located within
chloroplasts, largely in esterified form (Peisker et al.
1989). Chlorophyllase activity has been demonstrated
in a number of different species and its properties are
rather unusual. Thus, activity is latent andin vitro can
only be assessed in the presence of high concentrations
of solvents or detergents (Holden 1961; Trebitsh et
al. 1993). The enzyme was found to be located at the
inner envelope membrane of chloroplasts which may
explain this structural latency (Matile et al. 1997). In-
terestingly, dephytylating activity can be demonstrated
at all stages of leaf development implying that during
Chl breakdown, a mechanism comes into action which
establishes a physical contact between the enzyme
and its substrate, Chl (Matile et al. 1996). Chloro-
phyllase has been demonstrated to be modulated by
factors affecting senescence and Chl breakdown, such
as ethylene (Trebitsh et al. 1993).

Chlorophyllase has been purified from several
species, such asCitrus (Trebitsh et al. 1993) and
Chlorella regularis (Nishiyama et al. 1994) and
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cDNAs confering chlorophyllase activity, when over-
expressed inE. coli, have been isolated fromCitrus
(Jakob-Wilk et al. 1999),Chenopodium albumand
Arabidopsis thaliana(Tsuchiya et al. 1999).

Mg-dechelation

The identification of Mg-free forms of Chl accumu-
lating during senescence in a wide range of species
(e.g. Schoch et al. 1981; Shimokawa et al. 1990)
have suggested the presence of an enzyme catalyz-
ing the respective dechelation step. Using senescent
rape cotyledons or isolated chloroplasts, considerable
quantities of Pheidea (7a) accumulated, when oxidat-
ive cleavage of the porphyrin of Chl was inhibited by
iron chelating substances. In contrast, Pheidea did not
accumulate in normal yellowing leaf material (Lang-
meier et al. 1993). mg dechelatase removes the central
Mg2+ of Chlide (2) in exchange with 2 H+. Attempts
to purify this enzyme have produced surprising results:
Activity appears to be associated with a substance of
low molecular weight which is heat stable (Shioi et al.
1996a).

The key reaction is catalyzed by PaO and RCCR

The third step in the Chl catabolic pathway is most sig-
nificant for the yellowing process during senescence
because it is responsible for the loss of green color.
This is achieved by oxygenolytic opening of the por-
phyrin macrocycle of Pheidea (7a). Two enzymes
have been shown to be necessary for the formation of
the first accessible cleavage product, pFCC (8), PaO
and RCCR (see Figure 5). PaO which is located at the
inner envelope membrane of chloroplasts (Matile and
Schellenberg 1996) is exclusively present in senescent
leaves and absent from presenescent tissue (Hörten-
steiner et al. 1995). In contrast, activity ofRCCR has
been demonstrated at all stages of leaf development
and also in roots (Rodoni et al. 1997a). The require-
ment of two protein components was rationalized by
the finding that Pheidea to pFCC transformation oc-
curs in a two step reaction: RCC (10), the primary
product of oxygenolytic Pheidea (7a) cleavage by
PaO is subsequently reduced to pFCC (8) by RCCR
(Rodoni et al. 1997a). RCC (10) appears not to be
released from PaO, but is directly reduced to pFCC (8)
by RCCR, suggesting a close physical contact between
the two protein components during catalysis and meta-
bolic channeling of the red intermediate. Both partial
reactions require reduced ferredoxin as the source of
electrons, whereby ferredoxin is kept in the reduced

Figure 4. Cleavage of Pheidea (7a) by PaO to give a bound form
of the red catabolite RCC (10).

state either by Photosystem I or the pentose phosphate
cycle.

The properties of PaO of canola were investig-
ated mainly in assays together with RCCR and Pheide
a as substrate. Iron chelation and reconstitution ex-
periments established that PaO is a non-heme iron
containing oxygenase (Hörtensteiner et al. 1995). It
is specific for Pheidea with Pheideb (7b) as a com-
petitive inhibitor. This substrate specificity appears to
be responsible for the presence in higher plants of fi-
nal catabolites, NCCs, exclusively derived from Chl
(Pheide)a. Before entering the catabolic pathway, Chl
b (1b) must be converted to thea form (1a), most prob-
ably through a Chlb reducing mechanism which has
recently been described in cucumber and barley (Ito et
al. 1996; Scheumann et al. 1999).

In the presence of18O2, a mixture of partially pur-
ified rape PaO and RCCR converted Pheidea (7a)
into an18O-labeled sample of pFCC (18O-8), that con-
tained one18O-atom per molecule of catabolite, as
determined by fast atom mass spectrometry (Hörten-
steiner et al. 1998b). From mass spectral analysis of
fragment ions of18O-8, the isotopic label could be
assigned to the formyl group (Figure 4). These res-
ults indicate incorporation of one oxygen atom from
molecular oxygen at theα-meso position of7a in the
course of the oxygenolytic cleavage of the macrocycle.

Accordingly, the key ring cleavage step of Chl
degradation in senescent plants is catalyzed by
a monooxygenase (Figure 5) (Hörtensteiner et al.
1998b). One of the two oxygen atoms introduced in
the ring cleavage reaction is derived from O2, the
other from another source, most likely from water.
Over all, the transformation of Pheidea (7a) into RCC
(10) corresponds to a remarkable structural change,
as ring opening at the newly oxygenated sites with
formation of two carbonyl functions and the satura-
tion of the ‘eastern’β-meso position accompany the
incorporation of the two oxygen atoms. Sufficient ex-
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Figure 5. Structural outline of the pathway of Chl breakdown in
senescent cotyledons of oilseed rape.

perimental data are not available yet to help resolve
the mechanistic questions concerning the hypothet-
ical isomerization of the primary enzymic oxygenation
product to the ring-opened enzyme-bound form of
RCC. The formation of the related red bilinone in the
green algaC. protothecoideshas been suggested to
result from hydration of an epoxide intermediate and
subsequent rearrangement (Curty et al. 1995; Curty
and Engel 1997).

RCCR has been partially purified from barley (Ro-
doni et al. 1997b; Wüthrich et al. 2000) and a cDNA
encoding RCCR was subsequently cloned fromA.
thaliana(Wüthrich et al. 2000). Employing the native
barley protein, the properties of RCCR were ana-

lyzed using chemically synthesized RCC (Kräutler et
al. 1997) as substrate. Under these conditions,RCCR
activity was sensitive to oxygen suggesting that the
interaction of PaO and RCCR is a prerequisite for
RCCR action. Three different FCCs were formed from
RCC (10), two of which were identified as pFCC (8)
and its C(1) epimer, 1-epi-pFCC (9). The same prin-
cipal results were obtained with rape andA. thaliana
using crude protein extracts. In contrast, with recom-
binantA. thalianaRCCR heterologously expressed in
Escherichia coli, the third most polar FCC did not
accumulate suggesting that its occurence was due to
FCC modifiying activities present in the respective
enzyme preparations (Wüthrich et al. 2000).

When RCCR was assayed together with PaO and
Pheidea as substrate, only one of the two epimeric
pFCCs (8 or 9) accumulated, depending on the nature
of RCCR. Obviously, interaction with RCC (10)
bound to PaO causes site-specific reduction byRCCR,
a feature which is lost with ‘free’ RCC. A major sur-
vey of RCCRs from more than 60 species revealed this
stereospecificity towards reduction at C(1). Thereby,
all investigated genera and species within a plant fam-
ily exhibited the same specificity (Hörtensteiner et al.
2000).

Reactions from pFCC to NCCs

From the chemical structures of pFCC (8) (Mühlecker
et al. 1997) and the finalBn-NCCs (4–6) (Mühlecker
et al. 1993; Mühlecker and Kräutler 1996), additional
reactions occuring in the Chl catabolic pathway of
oilseed rape could be postulated. These are (in an as
yet unknown sequence) hydroxylation at C(82) and
subsequent conjugation with malonic acid or gluc-
ose and hydrolysis of the C(132) carboxymethyl ester.
These transformations introduce polar groups into the
tetrapyrrole. Finally, FCCs are tautomerized to NCCs.

There are no biochemical data available for the
hydroxylation of the C(8) ethyl side chain, but the
presence of a respective activity has been postulated
(Hörtensteiner 1999). Indirect evidence is given by
radiolabeling of a polarBn-FCC derived from Chl
(Ginsburg and Matile 1993) which can be malonylated
in assays of NCC malonyltransferase (see below) and,
hence, most likely represents the C(82) hydroxylated
form of pFCC (S. Hörtensteiner, unpublished). The
nature of the respective activity could be a cytochrome
P450 monooxygenase which have been shown to cata-
lyze a number of different hydroxylation reactions
(Schuler 1996).
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In Bn-NCC-1 (4), the major NCC of rape, the
C(82) hydroxyl group is esterified with malonic acid.
Malonyltransferase activity has been shown to be
present in protein extracts from rape (Hörtensteiner
1998). In vitro, malonyl coenzyme A served as
malonyl donor and different NCCs from several spe-
cies were accepted as a substrate, provided they
contained a free C(82) hydroxyl group. The activ-
ity was rather specific for NCCs as other malonyl
acceptors, such as 1-aminocyclopropane-1-carboxylic
acid, did not inhibit NCC transmalonylation. Gluc-
osyltransferase activity, necessary for the formation of
Bn-NCC-2 (5) has not been identified yet.

Compared to NCCs from other higher plant species
structurally described so far (Kräutler et al. 1991; It-
urraspe et al. 1995; Curty and Engel 1996),Bn-NCCs
are unique in respect to the presence of a freeβ-keto
carboxylic acid group in their cylopentanone moi-
ety (Mühlecker et al. 1993; Mühlecker and Kräutler
1996).The instability of this functional group towards
(nonenzymic) decarboxylation may be the cause for
the appearance of pyroforms of Chl catabolites that
have been inferred as true Chl catabolites in several
instances (Shimokawa et al. 1990; Engel et al. 1991,
1996). Likewise, recent investigations inChenopo-
dium albumsuggest that the demethylation of Pheide
is catalyzed by an enzyme, tentatively named pheo-
phorbidase, whereas the subsequent decarboxylation
step occurs nonenzymically (Shioi et al. 1996b). In
oilseed rape, hydrolysis of pFCC (8) to the respect-
ive demethylated tetrapyrrole has been shown to be
catalyzed by a soluble enzyme (Hörtensteiner et al.
1998a). The identity of the product was confirmed
by mass spectroscopy (S. Hörtensteiner and B. Kräut-
ler, unpublished). Only FCCs but no NCCs served
as substrates to the reaction (S. Hörtensteiner, unpub-
lished) indicating that demethylation occurs prior to
the tautomerization of FCCs to NCCs.

The three NCCs of oilseed rape (4-6) are localized
in the vacuoles of senescent cotyledons (Hinder et al.
1996) and a primary active transport system has been
shown to catalyze vacuolar import ofBn-NCC-1 (4)
(Lu et al. 1998; Tommasini et al. 1998). Due to lim-
ited amounts of material available, respective uptake
experiments have not been performed with pFCC (8),
but inhibitor studies ofBn-NCC-1 (4) using an FCC
from barley indicate that FCCs may be the prefered
substrates for vacuolar transport (Hinder et al. 1996).
These data together with preliminary experiments of
a nonenzymic, acid-catalyzed conversion of pFCC (8)
into an NCC (S. Hörtensteiner, unpublished) indicate

that in vivo the modifications of pFCC, as reflected in
the structures of the final NCCs, occur on the level of
FCCs. After import of FCCs into the vacuole, tauto-
merization to NCCs is triggered by the acidic milieu
of the vacuolar sap.

Compartmentation and regulation

Chl bound to apoproteins in the thylakoid membrane
is degraded to final NCCs which are deposited in
the vacuoles of senescent leaf tissues. Thus, the Chl
catabolic pathway extends over several subcellular
compartments and includes transport processes at the
chloroplast envelope and the tonoplast. The first four
enzymes, i.e. chlorophyllase, dechelatase, PaO and
RCCR, have been shown to be located inside sen-
escing chloroplasts (gerontoplasts) in all species in-
vestigated so far, including oilseed rape. Of the later
rape-specific reactions, most probably demethylation,
malonyltransfer and the hypothetical glucosyltransfer
take place in the cytoplasm. The location of the hy-
pothetical C(82) hydroxylase is unclear. Data from
export studies using intact barley gerontoplasts sug-
gest that the major exported FCC is not pFCC (8)
but an as yet unknown more polar FCC (Matile et al.
1992). The export required the hydrolysis of ATP for
energization, but the nature of the transport protein has
to be established.

Chl breakdown is a highly regulated process which
requires cytoplasmic protein synthesis (Matile 1992).
Of the catabolic enzymes investigated so far only PaO
appeared to be exclusively present during Chl break-
down, hence, it is senescence-specific (Schellenberg
et al. 1993; Ginsburg et al. 1994; Hörtensteiner et
al. 1995). In this respect, it is worth mentioning that
in most cases of stay-green phenotypes from different
species biochemically analyzed so far, the defect could
be attributed to a reduction or absence of PaO activity
(Vicentini et al. 1995; Thomas et al. 1996).

Significance of Chl breakdown in oilseed rape

Detoxification of Chl

Like other porphyrins, Chl is a photodynamically act-
ive and, therefore, potentially cell toxic compound.
During senescence, Chl is liberated due to remobil-
ization of the thylakoidal apoproteins accounting for
some 30% of the total plastid nitrogen pool (Thomas



144

1997). Thus, plants have evolved a mechanism which
is able to safely dispose of this hazard. The path-
way of Chl catabolism largely resembles the process
of detoxification of xenobiotics and herbicides, in-
cluding hydroxylation, modification reactions and,
finally, deposition within a metabolically inactive cel-
lular compartment, the vacuole (Kreuz et al. 1996). In
this respect, the breakdown of Chl can be considered
as an inevitable metabolic process accompanying the
remobilization of nutrients during plant senescence.

The ‘green seed problem’

Chl degradation is not only an integral part of leaf
senescence or fruit ripening, but in several species,
such as oilseed rape, also occurs in maturing seeds.
The cotyledons of developing canola embryos are rich
in Chl up to the mid-phase of maturation. Thereafter,
rapid Chl degradation is responsible for a complete
loss of green pigments before the end of the desicca-
tion phase is reached (Green et al. 1998). During this
phase, a short sublethal freezing stress which often
occurs in areas with a limited growth season causes
retention of Chl in mature oilrape seeds. The Chl
content of canola oil is known to have an important
impact on the quality, since it affects stability, odor
and flavor (Levadoux et al. 1987). Consequently, the
market value of Chl-contaminated rape oil is markedly
lowered, because costly processes are needed for
the removal of Chl. The underlying biochemistry of
this ‘green seed problem’ has been investigated ex-
tensively (Johnson-Flanagan and Thiagarajah 1990;
Johnson-Flanagan and Spencer 1994) and inhibition
of Chl catabolism has been attributed to accelerated
dessication of the seeds (Green et al. 1998). However,
it remains to be shown which of the Chl catabolic en-
zymes is (are) affected. The accumulation in maturing
seeds of Chlides and Pheides when degreening is in-
hibited by sublethal freezing (Johnson-Flanagan and
McLachlan 1990) indicates that the subsequent por-
phyrin macrocycle cleavage by PaO could be blocked,
as is the case in other instances of stay-green geno-
types (Vicentini et al. 1995; Thomas et al. 1996).
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