14 research outputs found

    Newborn screening programmes in Europe, arguments and efforts regarding harmonisation: Focus on organic acidurias

    No full text
    Background: The state of newborn screening (NBS) programmes for organic acidurias in Europe was assessed by a web-based questionnaire in the EU programme of Community Action in Public Health 2010/2011 among the – at that time – 27 EU member states, candidate countries, potential candidates and three EFTA countries. Results: Thirty-seven data sets from 39 target countries were analysed. Newborn screening for glutaric aciduria type I (GA-I) was performed in ten, for isovaleric aciduria (IVA) in nine and for methylmalonic aciduria including cblA, cblB, cblC and cblD (MMACBL) as well as for propionic aciduria (PA) in seven countries. Samples were obtained at a median age of 2.5 days and laboratory analysis began at median age of 4.5 days. Positive screening results were mostly confirmed in specialised centres by analysis of organic acids in urine. Confirmation of a positive screening result usually did not start before the second week of life (median ages: 9.5 days [IVA], 9 days [GA-I], 8.5 days [PA, MMACBL]) and was completed early in the third week of life (median ages: 15 days [IVA, PA, MMA], 14.5 days [GA-I]). Treatment was initiated in GA-I and IVA at a median age of 14 days and in MMACBL and PA at a median age of 15 days. Conclusion: NBS for organic acidurias in Europe is variable and less often established than for amino acid disorders. While for GA-I its benefit has already been demonstrated, there is room for debate of NBS for IVA and especially PA and MMACBL

    Evaluation of Right Ventricular Function in Patients with Propionic Acidemia—A Cross-Sectional Study

    No full text
    (1) Background: In propionic acidemia (PA), myocardial involvement often leads to progressive cardiac dysfunction of the left ventricle (LV). Cardiomyopathy (CM) is an important contributor to mortality. Although known to be of prognostic value in CM, there are no published data on right ventricular (RV) function in PA patients. (2) Methods: In this cross-sectional single-center study, systolic and diastolic RV function of PA patients was assessed by echocardiography, including frequency, onset, and combinations of echocardiographic parameters, as well as correlations to LV size and function. (3) Results: N = 18 patients were enrolled. Tricuspid annulus S’ was abnormal in 16.7%, RV-longitudinal strain in 11.1%, tricuspid annular plane systolic excursion (TAPSE) in 11.1%, Tricuspid valve (TV) E/e’ in 33.3%, and TV E/A in 16.7%. The most prevalent combinations of pathological parameters were TV E/A + TV E/e’ and TAPSE + TV S’. With age, the probability of developing abnormal RV function increases according to age-dependent normative data. There is a significant correlation between TAPSE and mitral annular plane systolic excursion (MAPSE), and RV/LV-longitudinal strain (p ≤ 0.05). N = 5 individuals died 1.94 years (mean) after cardiac evaluation for this study, and all had abnormal RV functional parameters. (4) Conclusions: Signs of diastolic RV dysfunction can be found in up to one third of individuals, and systolic RV dysfunction in 16.7% of individuals in our cohort. RV function is impaired in PA patients with a poor outcome. RV functional parameters should be used to complement clinical and left ventricular echocardiographic findings

    Delineating the clinical spectrum of isolated methylmalonic acidurias: cblA and mut

    Get PDF
    INTRODUCTION Long-term outcome is postulated to be different in isolated methylmalonic aciduria caused by mutations in the MMAA gene (cblA type) compared with methylmalonyl-CoA mutase deficiency (mut), but case definition was previously difficult. METHOD Cross-sectional analysis of data from the European Registry and Network for Intoxication type Metabolic Diseases (Chafea no. December 1, 2010). RESULTS Data from 28 cblA and 95 mut patients in most cases confirmed by mutation analysis (including 4 new mutations for cblA and 19 new mutations for mut). Metabolic crisis is the predominant symptom leading to diagnosis in both groups. Biochemical disturbances during the first crisis were similar in both groups, as well as the age at diagnosis. Z scores of body height and body weight were similar in both groups at birth, but were significantly lower in the mut group at the time of last visit. Glomerular filtration rate was significantly higher in cblA; and as a consequence, chronic renal failure and related complications were significantly less frequent and renal function could be preserved even in older patients. Neurological complications were predominantly found in the mut subgroup. Methylmalonic acidemia (MMA) levels in urine and plasma were significantly lower in cblA. 27/28 cblA patients were reported to be responsive to cobalamin, only 86% of cblA patients were treated with i.m. hydroxocobalamin. In total, 73% of cblA and 98% of mut patients followed a calculated diet with amino acid supplements in 27% (cblA) and 69% (mut). During the study interval, six patients from the mut group died, while all cblA patients survived. CONCLUSION Although similar at first, cblA patients respond to hydroxocobalamin treatment, subsequently show significantly lower levels of MMA and a milder course than mut patients

    Ca2+ and Na+ dependence of 3-hydroxyglutarate-induced excitotoxicity in primary neuronal cultures from chick embryo telencephalons

    No full text
    Glutaryl-CoA dehydrogenase deficiency (also known as glutaric aciduria type I) is an autosomal, recessively inherited neurometabolic disorder with a distinct neuropathology characterized by acute encephalopathy during a vulnerable period of brain development. Neuronal damage in this disease was demonstrated to involve N-methyl-D-aspartate (NMDA) receptor-mediated neurotoxicity of the endogenously accumulating metabolite 3-hydroxyglutarate (3-OH-GA). However, it remained unclear whether NMDA receptors are directly or indirectly activated and whether 3-OH-GA disturbs the intracellular Ca(2+) homeostasis. Here we report that 3-OH-GA activated recombinant NMDA receptors (e.g. NR1/NR2A) but not recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (e.g. GluR-A/GluR-B) in HEK293 cells. Fluorescence microscopy using fura-2 as Ca(2+) indicator revealed that 3-OH-GA increased intracellular Ca2+ concentrations in the presence of extracellular Ca2+ in cultured chick neurons. Similar to glutamate-induced cell damage, 3-OH-GA neurotoxicity was modulated by extracellular Na+. The large cation N-methyl-D-glucamine, which does not permeate NMDA receptor channels, enhanced 3-OH-GA-induced Ca2+ increase and cell damage. In contrast, 3-OH-GA-induced neurotoxicity was reduced after replacement of Na+ by Li+, which permeates NMDA channels but does not affect the Na+ /Ca2+ exchanger in the plasma membrane. Spectrophotometric analysis of respiratory chain complexes I-V in submitochondrial particles from bovine heart revealed only a weak inhibition of 3-OH-GA on complex V at the highest concentration tested (10 mM). In conclusion, the present study revealed that NMDA receptor activation and subsequent disturbance of Ca2+ homeostasis contribute to 3-OH-GA-induced cell damag

    Delineating the clinical spectrum of isolated methylmalonic acidurias: cblA

    No full text
    INTRODUCTION Long-term outcome is postulated to be different in isolated methylmalonic aciduria caused by mutations in the MMAA gene (cblA type) compared with methylmalonyl-CoA mutase deficiency (mut), but case definition was previously difficult. METHOD Cross-sectional analysis of data from the European Registry and Network for Intoxication type Metabolic Diseases (Chafea no. December 1, 2010). RESULTS Data from 28 cblA and 95 mut patients in most cases confirmed by mutation analysis (including 4 new mutations for cblA and 19 new mutations for mut). Metabolic crisis is the predominant symptom leading to diagnosis in both groups. Biochemical disturbances during the first crisis were similar in both groups, as well as the age at diagnosis. Z scores of body height and body weight were similar in both groups at birth, but were significantly lower in the mut group at the time of last visit. Glomerular filtration rate was significantly higher in cblA; and as a consequence, chronic renal failure and related complications were significantly less frequent and renal function could be preserved even in older patients. Neurological complications were predominantly found in the mut subgroup. Methylmalonic acidemia (MMA) levels in urine and plasma were significantly lower in cblA. 27/28 cblA patients were reported to be responsive to cobalamin, only 86% of cblA patients were treated with i.m. hydroxocobalamin. In total, 73% of cblA and 98% of mut patients followed a calculated diet with amino acid supplements in 27% (cblA) and 69% (mut). During the study interval, six patients from the mut group died, while all cblA patients survived. CONCLUSION Although similar at first, cblA patients respond to hydroxocobalamin treatment, subsequently show significantly lower levels of MMA and a milder course than mut patients

    Long-Term Outcome in Methylmalonic Acidurias Is Influenced by the Underlying Defect (mut0, mut−, cblA, cblB)

    Full text link
    Isolated methylmalonic acidurias comprise a heterogeneous group of inborn errors of metabolism caused by defects of methylmalonyl-CoA mutase (MCM) (mut0, mut–) or deficient synthesis of its cofactor 5′-deoxyadenosylcobalamin (AdoCbl) (cblA, cblB). The aim of this study was to compare the long-term outcome in patients from these four enzymatic subgroups. Eighty-three patients with isolated methylmalonic acidurias (age 7–33 y) born between 1971 and 1997 were enzymatically characterized and prospectively followed to evaluate the long-term outcome (median follow-up period, 18 y). Patients with mut0 (n = 42), mut− (n = 10), cblA (n = 20), and cblB (n = 11) defects were included into the study. Thirty patients (37%) died, and 26 patients survived with a severe or moderate neurologic handicap (31%), whereas 27 patients (32%) remained neurologically uncompromised. Chronic renal failure (CRF) was found most frequently in mut0 (61%) and cblB patients (66%), and was predicted by the urinary excretion of methylmalonic acid (MMA) before CRF. Overall, patients with mut0 and cblB defects had an earlier onset of symptoms, a higher frequency of complications and deaths, and a more pronounced urinary excretion of MMA than those with mut− and cblA defects. In addition, long-term outcome was dependent on the age cohort and cobalamin responsiveness

    A high-throughput newborn screening approach for SCID, SMA, and SCD combining multiplex qPCR and tandem mass spectrometry.

    No full text
    Early diagnosis of severe combined immunodeficiency (SCID), spinal muscular atrophy (SMA), and sickle cell disease (SCD) improves health outcomes by providing a specific treatment before the onset of symptoms. A high-throughput nucleic acid-based method in newborn screening (NBS) has been shown to be fast and cost-effective in the early detection of these diseases. Screening for SCD has been included in Germany's NBS Program since Fall 2021 and typically requires high-throughput NBS laboratories to adopt analytical platforms that are demanding in terms of instrumentation and personnel. Thus, we developed a combined approach applying a multiplexed quantitative real-time PCR (qPCR) assay for simultaneous SCID, SMA, and 1st-tier SCD screening, followed by a tandem mass spectrometry (MS/MS) assay for 2nd-tier SCD screening. DNA is extracted from a 3.2-mm dried blood spot from which we simultaneously quantify T-cell receptor excision circles for SCID screening, identify the homozygous SMN1 exon 7 deletion for SMA screening, and determine the integrity of the DNA extraction through the quantification of a housekeeping gene. In our two-tier SCD screening strategy, our multiplex qPCR identifies samples carrying the HBB: c.20A>T allele that is coding for sickle cell hemoglobin (HbS). Subsequently, the 2nd tier MS/MS assay is used to distinguish heterozygous HbS/A carriers from samples of patients with homozygous or compound heterozygous SCD. Between July 2021 and March 2022, 96,015 samples were screened by applying the newly implemented assay. The screening revealed two positive SCID cases, while 14 newborns with SMA were detected. Concurrently, the qPCR assay registered HbS in 431 samples which were submitted to 2nd-tier SCD screening, resulting in 17 HbS/S, five HbS/C, and two HbS/β thalassemia patients. The results of our quadruplex qPCR assay demonstrate a cost-effective and fast approach for a combined screening of three diseases that benefit from nucleic-acid based methods in high-throughput NBS laboratories
    corecore