62 research outputs found

    Modulation allergischer Erkrankungen durch mikrobielle Stimulation

    Get PDF

    Universality in metallic nanocohesion: a quantum chaos approach

    Full text link
    Convergent semiclassical trace formulae for the density of states and cohesive force of a narrow constriction in an electron gas, whose classical motion is either chaotic or integrable, are derived. It is shown that mode quantization in a metallic point contact or nanowire leads to universal oscillations in its cohesive force: the amplitude of the oscillations depends only on a dimensionless quantum parameter describing the crossover from chaotic to integrable motion, and is of order 1 nano-Newton, in agreement with recent experiments. Interestingly, quantum tunneling is shown to be described quantitatively in terms of the instability of the classical periodic orbits.Comment: corrects spelling of one author name on abstract page (paper is unchanged

    Quantum Suppression of the Rayleigh Instability in Nanowires

    Full text link
    A linear stability analysis of metallic nanowires is performed in the free-electron model using quantum chaos techniques. It is found that the classical instability of a long wire under surface tension can be completely suppressed by electronic shell effects, leading to stable cylindrical configurations whose electrical conductance is a magic number 1, 3, 5, 6,... times the quantum of conductance. Our results are quantitatively consistent with recent experiments with alkali metal nanowires.Comment: 10 pages, 5 eps figures, updated and expanded, accepted for publication in "Nonlinearity

    Crossover from Electronic to Atomic Shell Structure in Alkali Metal Nanowires

    Full text link
    After making a cold weld by pressing two clean metal surfaces together, upon gradually separating the two pieces a metallic nanowire is formed, which progressively thins down to a single atom before contact is lost. In previous experiments [1,2] we have observed that the stability of such nanowires is influenced by electronic shell filling effects, in analogy to shell effects in metal clusters [3]. For sodium and potassium at larger diameters there is a crossover to crystalline wires with shell-closings corresponding to the completion of additional atomic layers. This observation completes the analogy between shell effects observed for clusters and nanowires.Comment: 4 page

    Observation of Supershell Structure in Alkali Metal Nanowires

    Get PDF
    Nanowires are formed by indenting and subsequently retracting two pieces of sodium metal. Their cross-section gradually reduces upon retraction and the diameters can be obtained from the conductance. In previous work we have demonstrated that when one constructs a histogram of diameters from large numbers of indentation-retraction cycles, such histograms show a periodic pattern of stable nanowire diameters due to shell structure in the conductance modes. Here, we report the observation of a modulation of this periodic pattern, in agreement with predictions of a supershell structure.Comment: Phys. Rev. Lett., in prin

    Force, charge, and conductance of an ideal metallic nanowire

    Full text link
    The conducting and mechanical properties of a metallic nanowire formed at the junction between two macroscopic metallic electrodes are investigated. Both two- and three-dimensional wires with a W(ide)-N(arrow)-W(ide) geometry are modelled in the free-electron approximation with hard-wall boundary conditions. Tunneling and quantum-size effects are treated exactly using the scattering matrix formalism. Oscillations of order E_F/lambda_F in the tensile force are found when the wire is stretched to the breaking point, which are synchronized with quantized jumps in the conductance. The force and conductance are shown to be essentially independent of the width of the wide sections (electrodes). The exact results are compared with an adiabatic approximation; the later is found to overestimate the effects of tunneling, but still gives qualitatively reasonable results for nanowires of length L>>lambda_F, even for this abrupt geometry. In addition to the force and conductance, the net charge of the nanowire is calculated and the effects of screening are included within linear response theory. Mesoscopic charge fluctuations of order e are predicted which are strongly correlated with the mesoscopic force fluctuations. The local density of states at the Fermi energy exhibits nontrivial behavior which is correlated with fine structure in the force and conductance, showing the importance of treating the whole wire as a mesoscopic system rather than treating only the narrow part.Comment: 23 pages, 8 figure

    Ăśber das viscosimetrische Verhalten der Malzextrakte

    No full text
    • …
    corecore