10 research outputs found
BAFFR activates PI3K/AKT signaling in human naive but not in switched memory B cells through direct interactions with B cell antigen receptors
Binding of BAFF to BAFFR activates in mature B cells PI3K/AKT signaling regulating protein synthesis, metabolic fitness, and survival. In humans, naive and memory B cells express the same levels of BAFFR, but only memory B cells seem to survive without BAFF. Here, we show that BAFF activates PI3K/AKT only in naive B cells and changes the expression of genes regulating migration, proliferation, growth, and survival. BAFF-induced PI3K/AKT activation requires direct interactions between BAFFR and the B cell antigen receptor (BCR) components CD79A and CD79B and is enhanced by the AKT coactivator TCL1A. Compared to memory B cells, naive B cells express more surface BCRs, which interact better with BAFFR than IgG or IgA, thus allowing stronger responses to BAFF. As ablation of BAFFR in naive and memory B cells causes cell death independent of BAFF-induced signaling, BAFFR seems to act also as an intrinsic factor for B cell survival.Peer Reviewe
Lessons for the clinical nephrologist: recurrence of nephrotic syndrome induced by SARS-CoV-2
Abstract
SARS-CoV-2 is characterized by a multiorgan tropism including the kidneys. Recent autopsy series indicated that SARS-CoV-2 can infect both tubular and glomerular cells. Whereas tubular cell infiltration may contribute to acute kidney injury, data on a potential clinical correlative to glomerular affection is rare. We describe the first case of nephrotic syndrome in the context of COVID-19 in a renal transplant recipient. A 35 year old male patient received a kidney allograft for primary focal segmental glomerulosclerosis (FSGS). Three months posttransplant a recurrence of podocytopathy was successfully managed by plasma exchange, ivIG, and a conversion from tacrolimus to belatacept (initial proteinuria > 6 g/l decreased to 169 mg/l). Six weeks later he was tested positive for SARS-CoV-2 and developed a second increase of proteinuria (5.6 g/l). Renal allograft biopsy revealed diffuse podocyte effacement and was positive for SARS-CoV-2 in RNA in-situ hybridation indicating a SARS-CoV-2 associated recurrence of podocytopathy. Noteworthy, nephrotic proteinuria resolved spontaneously after recovering from COVID-19. The present case expands the spectrum of renal involvement in COVID-19 from acute tubular injury to podocytopathy in renal transplant recipients. Thus, it may be wise to test for SARS-CoV-2 prior to initiation of immunosuppression in new onset glomerulopathy during the pandemic
Veränderungen der von Willebrand Faktor- und ADAMTS13-Homöostase bei COVID-19
Bereits zu Beginn der Coronavirus Disease 2019-Pandemie fiel auf, dass es häufig zu makro- und mikrothrombotischen Ereignissen bei Erkrankten kommt und dies unter anderem in einer Endotheliitis begründet ist. Das Ziel dieser Arbeit war es mittels Beobachtungsstudien, einen möglichen Pathomechanismus zu finden, der diesen Befund erklären kann und darauf aufbauend eine Interventionsstudie durchzuführen. In den Beobachtungsstudien fand sich, neben einer erhöhten Menge des von Willebrand Faktors (vWF) als Ausdruck der Endotheliitis, eine signifikante und mit dem Schweregrad der Erkrankung korrelierende Verminderung des Verhältnisses aus "a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13" (ADAMTS13) zu vWF. In Gelelektrophoresen zeigten sich Auffälligkeiten, die diesen Befund stützten. Mittels Plasmapherese gelang in der Interventionsstudie die teilweise signifikante Verbesserung klinischer und laborchemischer Parameter bei kritisch kranken Patienten
Impact of renal disease and comorbidities on mortality in hemodialysis patients with COVID-19: a multicenter experience from Germany
Patients with end-stage renal disease (ESRD) suffer from a progressively increasing low-grade systemic inflammation, which is associated with higher morbidity and mortality. Regulatory T cells (Tregs) play an important role in regulation of the inflammatory process. Previously, it has been demonstrated that short-chain fatty acids reduce inflammation in the central nervous system in a murine model of multiple sclerosis through an increase in tissue infiltrating Tregs. Here, we evaluated the effect of the short-chain fatty acid propionate on the chronic inflammatory state and T-cell composition in ESRD patients. Analyzing ESRD patients and healthy blood donors before, during, and 60 days after the propionate supplementation by multiparametric flow cytometry we observed a gradual and significant expansion in the frequencies of CD2
Lessons for the clinical nephrologist: recurrence of nephrotic syndrome induced by SARS-CoV-2
SARS-CoV-2 is characterized by a multiorgan tropism including the kidneys. Recent autopsy series indicated that SARS-CoV-2 can infect both tubular and glomerular cells. Whereas tubular cell infiltration may contribute to acute kidney injury, data on a potential clinical correlative to glomerular affection is rare. We describe the first case of nephrotic syndrome in the context of COVID-19 in a renal transplant recipient. A 35 year old male patient received a kidney allograft for primary focal segmental glomerulosclerosis (FSGS). Three months posttransplant a recurrence of podocytopathy was successfully managed by plasma exchange, ivIG, and a conversion from tacrolimus to belatacept (initial proteinuria > 6 g/l decreased to 169 mg/l). Six weeks later he was tested positive for SARS-CoV-2 and developed a second increase of proteinuria (5.6 g/l). Renal allograft biopsy revealed diffuse podocyte effacement and was positive for SARS-CoV-2 in RNA in-situ hybridation indicating a SARS-CoV-2 associated recurrence of podocytopathy. Noteworthy, nephrotic proteinuria resolved spontaneously after recovering from COVID-19. The present case expands the spectrum of renal involvement in COVID-19 from acute tubular injury to podocytopathy in renal transplant recipients. Thus, it may be wise to test for SARS-CoV-2 prior to initiation of immunosuppression in new onset glomerulopathy during the pandemic
Lessons for the clinical nephrologist
SARS-CoV-2 is characterized by a multiorgan tropism including the kidneys. Recent autopsy series indicated that SARS-CoV-2 can infect both tubular and glomerular cells. Whereas tubular cell infiltration may contribute to acute kidney injury, data on a potential clinical correlative to glomerular affection is rare. We describe the first case of nephrotic syndrome in the context of COVID-19 in a renal transplant recipient. A 35 year old male patient received a kidney allograft for primary focal segmental glomerulosclerosis (FSGS). Three months posttransplant a recurrence of podocytopathy was successfully managed by plasma exchange, ivIG, and a conversion from tacrolimus to belatacept (initial proteinuria > 6 g/l decreased to 169 mg/l). Six weeks later he was tested positive for SARS-CoV-2 and developed a second increase of proteinuria (5.6 g/l). Renal allograft biopsy revealed diffuse podocyte effacement and was positive for SARS-CoV-2 in RNA in-situ hybridation indicating a SARS-CoV-2 associated recurrence of podocytopathy. Noteworthy, nephrotic proteinuria resolved spontaneously after recovering from COVID-19. The present case expands the spectrum of renal involvement in COVID-19 from acute tubular injury to podocytopathy in renal transplant recipients. Thus, it may be wise to test for SARS-CoV-2 prior to initiation of immunosuppression in new onset glomerulopathy during the pandemic
Effect of plasma exchange on COVID-19 associated excess of von Willebrand factor and inflammation in critically ill patients
Ubiquitous microthromboses in the pulmonary vasculature play a crucial role in the pathogenesis of COVID-19 associated acute respiratory distress syndrome (ARDS). Excess of Willebrand factor (vWf) with intravascular multimer formation was identified as a key driver of this finding. Plasma exchange (PLEX) might be a therapeutic option to restore the disbalance between vWf and ADAMTS13. We report the effects of PLEX on vWf, ADAMTS13, inflammatory cytokines and parameters of ventilation. We investigated 25 patients, who were on mechanical ventilation for COVID-19 pneumonia with ARDS at two German university hospitals. All patients received PLEX as an ultima ratio measure for refractory ARDS. VWf antigen (vWf:Ag), ADAMTS13 activity, a cytokine panel mirroring the inflammatory situation and clinical parameters were assessed before and after three to six PLEX therapies with fresh frozen plasma. Before the PLEX sequence there was an excessive release of vWf:Ag (425.4 167.5%) and mildly reduced ADAMTS13 activity (49.7 23.3%). After the PLEX series, there was a significant increase of ADAMTS13 activity to 62.4 17.7% (p = 0.029) and a significant decrease of vWf:Ag to 336.1 138.2% (p = 0.041) resulting in a 63% improvement of the ADAMT13/vWf:Ag ratio from 14.5 10.0 to 23.7 14.6, p = 0.024. Comparison of parameters before and after individual PLEX sessions (n = 35) revealed a mean reduction of vWf from 387.8 165.1 to 213.2 62.3% (p = 0.001) and an increase of ADAMTS13 activity from 60.4 20.1 to 70.5 14.0% (p = 0.001). Parallelly, monocyte chemotactic protein-1 and interleukin-18 decreased significantly (p = 0.034 each). Along the PLEX sequence lactate dehydrogenase (p = 0.001), C-reactive protein (p = 0.001), and positive end expiratory pressure (p = 0.01) significantly decreased accompanied by an improvement of Horovitz index (p = 0.001). PLEX restores the disbalance between ADAMTS13 and vWf:Ag, a driver of immunothrombosis. Moreover, it reduces the inflammatory state and is associated with a benefit of ventilation parameters. These findings render a further rationale to regard PLEX as a therapeutic option in severe COVID-19
Predictors of impaired SARS-CoV-2 immunity in healthcare workers after vaccination with BNT162b2
Healthcare workers are at substantially increased risk for infection with SARS-CoV-2. Successful vaccination constitutes a crucial prerequisite to protect this group during the pandemic. Since post vaccination antibody monitoring is not standard of care in all healthcare institutions, data on risk factors of impaired vaccine induced immune response are urgently required. Moreover, there are no data on cellular immune responses in humoral low responders so far. Anti-SARS-CoV-2 spike IgG was assessed after vaccination with BNT162b2 in 1386 employees of three hospitals of a German healthcare provider. Concentrations were compared to those of 45 convalescent employees. Vaccine-induced cellular immunity was measured in employees with reduced humoral response by assessment of frequencies of SARS-CoV-2-reactive and T cell. Anti-SARS-CoV-2 spike IgG were detected in 99.9% of 1386 healthcare workers after completed vaccination. The median antibody concentration was significantly higher after vaccination than after infection with SARS-CoV-2 (p = 0.0001). 10 subjects (0.7%) generated an IgG concentration < 100 IU/ml, and only two persons (0.1%, solid organ recipients) did not produce detectable antibodies at all. T cell responses of those subjects with submaximal or lacking humoral response were comparable to employees with maximal antibody titers. 50% of those individuals with impaired or lacking humoral immune response were on immunosuppression. Vaccination to SARS-CoV-2 with BNT162b2 is very effective in healthcare workers yielding a seroconversion rate of 99.9%. Immunosuppression is the most important risk factor of an impaired immune response. There was no case of vaccination failure without immunosuppression. Thus, post vaccination antibody monitoring is highly recommendable in those employees with immunosuppression
Generation of potentially inhibitory autoantibodies to ADAMTS13 in coronavirus disease 2019
It has recently been shown that von Willebrand factor (VWF) multimers contribute to immunothrombosis in Coronavirus disease 2019 (COVID-19). Since COVID-19 is associated with an increased risk of autoreactivity, the present study investigates, whether the generation of autoantibodies to ADAMTS13 contributes to this finding. In this observational prospective controlled multicenter study blood samples and clinical data of patients hospitalized for COVID-19 were collected from April to November 2020. The study included 156 individuals with 90 patients having confirmed COVID-19 of mild to critical severity. 30 healthy individuals and 36 critically ill ICU patients without COVID-19 served as controls. ADAMTS13 antibodies occurred in 31 (34.4%) COVID-19 patients. Antibodies occurred more often in critically ill COVID-19 patients (55.9%) than non-COVID-19 ICU patients and healthy controls (5.6% and 6.7%; p < 0.001), respectively. Generation of ADAMTS13 antibodies in COVID-19 was associated with lower ADAMTS13 activity (56.5%, interquartile range (IQR) 21.25 vs. 71.5%, IQR 24.25, p = 0.0041), increased disease severity (severe or critical in 90% vs. 62.3%, p = 0.019), and a trend to higher mortality (35.5% vs. 18.6%, p = 0.077). Median time to antibody development was 11 days after first positive SARS-CoV-2-PCR specimen. Gel analysis of VWF multimers resembled the constellation in patients with TTP. The present study demonstrates for the first time, that generation of ADAMTS13 antibodies is frequent in COVID-19, associated with lower ADAMTS13 activity and increased risk of an adverse disease course. These findings provide a rationale to include ADAMTS13 antibodies in the diagnostic workup of SARS-CoV-2 infections