274 research outputs found

    Synthetic Spectra for Type Ia Supernovae at Early Epochs

    Full text link
    We present the current status of our construction of synthetic spectra for type Ia supernovae. These properly take into account the effects of NLTE and an adequate representation of line blocking and blanketing. The models are based on a sophisticated atomic database. We show that the synthetic spectrum reproduces the observed spectrum of 'normal' SN-Ia near maximum light from the UV to the near-IR. However, further improvements are necessary before truly quantitative analyses of observed SN-Ia spectra can be performed. In particular, the inner boundary condition has to be fundamentally modified. This is due to the dominance of electron scattering over true absorption processes coupled with the flat density structure in these objectsComment: To appear in "Proceedings of the IAU Colloquium 192 - Supernovae (10 Years of SN1993J)", eds. J.M. Marcaide and K.W. Weile

    Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits

    Get PDF
    Electron beam induced deposition (EBID) currently provides the only direct writing technique for truly three-dimensional nanostructures with geometrical features below 50 nm. Unfortunately, the depositions from metal-organic precursors suffer from a substantial carbon content. This hinders many applications, especially in plasmonics where the metallic nature of the geometric surfaces is mandatory. To overcome this problem a post-deposition treatment with oxygen plasma at room temperature was investigated for the purification of gold containing EBID structures. Upon plasma treatment, the structures experience a shrinkage in diameter of about 18 nm but entirely keep their initial shape. The proposed purification step results in a core-shell structure with the core consisting of mainly unaffected EBID material and a gold shell of about 20 nm in thickness. These purified structures are plasmonically active in the visible wavelength range as shown by dark field optical microscopy on helical nanostructures. Most notably, electromagnetic modeling of the corresponding scattering spectra verified that the thickness and quality of the resulting gold shell ensures an optical response equal to that of pure gold nanostructures

    Prospect of Studying Hard X- and Gamma-Rays from Type Ia Supernovae

    Full text link
    We perform multi-dimensional, time-dependent radiation transfer simulations for hard X-ray and gamma-ray emissions, following radioactive decays of 56Ni and 56Co, for two-dimensional delayed detonation models of Type Ia supernovae (SNe Ia). The synthetic spectra and light curves are compared with the sensitivities of current and future observatories for an exposure time of 10^6 seconds. The non-detection of the gamma-ray signal from SN 2011fe at 6.4 Mpc by SPI on board INTEGRAL places an upper limit for the mass of 56Ni of \lesssim 1.0 Msun, independently from observations in any other wavelengths. Signals from the newly formed radioactive species have not been convincingly measured yet from any SN Ia, but the future X-ray and gamma-ray missions are expected to deepen the observable horizon to provide the high energy emission data for a significant SN Ia sample. We predict that the hard X-ray detectors on board NuStar (launched in 2012) or ASTRO-H (scheduled for launch in 2014) will reach to SNe Ia at \sim15 Mpc, i.e., one SN every few years. Furthermore, according to the present results, the soft gamma-ray detector on board ASTRO-H will be able to detect the 158 keV line emission up to \sim25 Mpc, i.e., a few SNe Ia per year. Proposed next generation gamma-ray missions, e.g., GRIPS, could reach to SNe Ia at \sim20 - 35 Mpc by MeV observations. Those would provide new diagnostics and strong constraints on explosion models, detecting rather directly the main energy source of supernova light.Comment: 14 pages, 7 figures, 1 table, accepted for publication in Ap

    Optical and near-IR observations of SN 1998bw

    Full text link
    SN 1998bw, especially after the discovery of GRB 030329/SN 2003dh, seems to be the equivalent of the Rosetta stone for the SN/GRB connection. In this paper I review optical and near IR observations that have been carried out for this uncanny object, which has probably confirmed suspicions and ideas originally formulated in the early seventies of last century.Comment: 9 pages, 7 figures. Invited review to the IAU Colloquium n. 192, SUPERNOVAE: ten years of SN 1993J, Valencia (Spain

    COMPTEL upper limits for the 56Co gamma-ray emission from SN1998bu

    Full text link
    Supernova 1998bu in the galaxy M96 was observed by COMPTEL for a total of 88 days starting 17 days after the explosion. We searched for a signal in the 847 keV and 1238 keV lines of radioactive 56Co from this type Ia supernova. Using several different analysis methods, we did not detect SN1998bu. Our measurements should have been sensitive enough to detect 60Co gamma-rays as predicted from supernova models. Our 2-sigma flux limit is 2.3 10^{-5} photons cm^{-2} s^{-1}; this would correspond to 0.35 solar mass of ejected 56Ni, if SN1998bu were at a distance of 11.3 Mpc and transparent to MeV gamma rays for the period of our measurements. We discuss our measurements in the context of common supernova models, and conclude disfavoring a supernova event with large mixing and major parts of the freshly-generated radioactivity in outer layers.Comment: 8 pages, 6 EPS-figures, Latex2e, aa.cls needed, accepted for publication in A&

    Following multi-dimensional Type Ia supernova explosion models to homologous expansion

    Full text link
    The last years have witnessed a rapid development of three-dimensional models of Type Ia supernova explosions. Consequently, the next step is to evaluate these models under variation of the initial parameters and to compare them with observations. To calculate synthetic lightcurves and spectra from numerical models, it is mandatory to follow the evolution up to homologous expansion. We report on methods to achieve this in our current implementation of multi-dimensional Type Ia supernova explosion models. The novel scheme is thoroughly tested in two dimensions and a simple example of a three-dimensional simulation is presented. We discuss to what degree the assumption of homologous expansion is justified in these models.Comment: 15 pages, 16 figures, resolution of some figures reduced to meet astro-ph file size restriction, submitted to A&

    Full-star Type Ia supernova explosion models

    Full text link
    We present full-star simulations of Type Ia supernova explosions on the basis of the standard Chandrasekhar-mass deflagration model. Most simulations so far considered only one spatial octant and assumed mirror symmetry to the other octants. Two full-star models are evolved to homologous expansion and compared with previous single-octant simulations. Therefrom we analyze the effect of abolishing the artificial symmetry constraint on the evolution of the flame surface. It turns out that the development of asymmetries depends on the chosen initial flame configuration. Such asymmetries of the explosion process could possibly contribute to the observed polarization of some Type Ia supernova spectra.Comment: 11 pages, 10 figures, resolution of some figures reduced to meet astro-ph file size restriction, submitted to A&

    Double-detonation sub-Chandrasekhar supernovae: synthetic observables for minimum helium shell mass models

    Full text link
    Abridged. In the double detonation scenario for Type Ia supernovae (SNe Ia) a detonation initiates in a shell of He-rich material accreted from a companion star by a sub-Chandrasekhar-mass White Dwarf (WD). This shell detonation drives a shock front into the carbon-oxygen (C/O) WD that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the WD. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of SNe Ia since the explosion ejecta are surrounded by the products of explosive He burning in the shell. Recently, it was proposed that detonations might be possible for much less massive He shells than previously assumed. Moreover, it was shown that even detonations of these minimum He shell masses robustly trigger detonations of the C/O core. Here we present time-dependent multi-wavelength radiative transfer calculations for models with minimum He shell mass and derive synthetic observables for both the optical and {\gamma}-ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive He shells were considered. Our models predict light curves which cover both the range of brightnesses and the rise and decline times of observed SNe Ia. However, their colours and spectra do not match the observations. In particular, their B-V colours are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the He shell of our models which contain significant amounts of Ti and Cr. Using a toy model, we also show that the burning products of the He shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed SNe Ia may still be feasible but further study of the shell properties is required.Comment: 17 pages, 13 figures. Accepted for publication by Ap
    corecore