66 research outputs found

    Synthesis of Thiazolo[5,4-f]quinazolin-9(8H)-ones as Multi-Target Directed Ligands of Ser/Thr Kinases

    Get PDF
    International audienceA library of thirty novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives belonging to four series designated as 12, 13, 14 and 15 was efficiently prepared, helped by microwave-assisted technology when required. The efficient multistep synthesis of methyl 6-amino-2-cyano- benzo[d]thiazole-7-carboxylate (1) has been reinvestigated and performed on a multigram scale. The inhibitory potency of the final products against five kinases involved in Alzheimer’s disease was evaluated. This study demonstrates that some molecules of the 12 and 13 series described in this paper are particularly promising for the development of new multi-target inhibitors of kinase

    Synthesis of bioactive 2-(arylamino)thiazolo[5,4-f]-quinazolin-9-ones via the Hügershoff reaction or Cu- catalyzed intramolecular C-S bond formation

    Get PDF
    International audienceA library of thirty eight novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives (series 8, 10, 14 and 17) was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H)-one (3) has been reinvestigated and performed on a multigram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer’s disease and showed that some molecules of the 17 series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases

    Studying the micro-angels approach to micro-investment decisions

    Get PDF
    Purpose: The paper analyzes the micro-angels investment behaviour, looking both to the criteria used in the selection of their investment projects and to the characteristics of their guidance role during the investment period. Design/Methodology/Approach: The paper focuses on a double bottom line movement of French micro-angels clubs that has been operating since 1983. Our primary source of data is an online survey carried out during March 2012, asking members of clubs all over France for different aspects of their procedures. Findings: Our findings suggest that micro-angels are interested in small, socially or environmentally friendly projects having the potential to contribute to the development of their neighbourhood. We find that women are even more interested than men in such projects. Educated micro-angels value entrepreneurial motivation and understanding of the project more than less-educated micro-angels. We also point out the factors that micro-angels consider important in accompanying enterprises. Here we find that gender makes little difference. However, retired micro-angels value financial diagnosis made conjointly with entrepreneurs, while both active micro-angels and educated micro-angels value more the use of their network to help micro-entrepreneurs. Practical/Social Implications: Given the potential benefits of micro-angels investing and guiding the development of micro-enterprises, a social micro-angel investment on a major scale in developing countries could help in tackling some of the problems faced by the development of microfinance, such as the over-indebtedness of micro-entrepreneurs. Practitioners and new initiatives would gain from understanding what adaptations need to be made. Originality/value: We expect to add to the venture capital theory to take into account non-economic motives

    Protein phosphatase 1-dependent bidirectional synaptic plasticity controls ischemic recovery in the adult brain

    Full text link
    Protein kinases and phosphatases can alter the impact of excitotoxicity resulting from ischemia by concurrently modulating apoptotic/survival pathways. Here, we show that protein phosphatase 1 (PP1), known to constrain neuronal signaling and synaptic strength (Mansuy et al., 1998; Morishita et al., 2001), critically regulates neuroprotective pathways in the adult brain. When PP1 is inhibited pharmacologically or genetically, recovery from oxygen/glucose deprivation (OGD) in vitro, or ischemia in vivo is impaired. Furthermore, in vitro, inducing LTP shortly before OGD similarly impairs recovery, an effect that correlates with strong PP1 inhibition. Conversely, inducing LTD before OGD elicits full recovery by preserving PP1 activity, an effect that is abolished by PP1 inhibition. The mechanisms of action of PP1 appear to be coupled with several components of apoptotic pathways, in particular ERK1/2 (extracellular signal-regulated kinase 1/2) whose activation is increased by PP1 inhibition both in vitro and in vivo. Together, these results reveal that the mechanisms of recovery in the adult brain critically involve PP1, and highlight a novel physiological function for long-term potentiation and long-term depression in the control of brain damage and repair

    Hypothalamic circuitry underlying stress-induced insomnia and peripheral immunosuppression.

    Get PDF
    The neural substrates of insomnia/hyperarousal induced by stress remain unknown. Here, we show that restraint stress leads to hyperarousal associated with strong activation of corticotropin-releasing hormone neurons in the paraventricular nucleus of hypothalamus (CRHPVN) and hypocretin neurons in the lateral hypothalamus (HcrtLH). CRHPVN neurons directly innervate HcrtLH neurons, and optogenetic stimulation of LH-projecting CRHPVN neurons elicits hyperarousal. CRISPR-Cas9-mediated knockdown of the crh gene in CRHPVN neurons abolishes hyperarousal induced by stimulating LH-projecting CRHPVN neurons. Genetic ablation of Hcrt neurons or crh gene knockdown significantly counteracts restraint stress-induced hyperarousal. Single-cell mass cytometry by time of flight (CyTOF) revealed extensive changes to immune cell distribution and functional responses in peripheral blood during hyperarousal upon optogenetic stimulation of CRHPVN neurons simulating stress-induced insomnia. Our findings suggest both central and peripheral systems are synergistically engaged in the response to stress via CRHPVN circuitry

    Integrated trajectories of the maternal metabolome, proteome, and immunome predict labor onset

    Get PDF
    Estimating the time of delivery is of high clinical importance because pre- and postterm deviations are associated with complications for the mother and her offspring. However, current estimations are inaccurate. As pregnancy progresses toward labor, major transitions occur in fetomaternal immune, metabolic, and endocrine systems that culminate in birth. The comprehensive characterization of maternal biology that precedes labor is key to understanding these physiological transitions and identifying predictive biomarkers of delivery. Here, a longitudinal study was conducted in 63 women who went into labor spontaneously. More than 7000 plasma analytes and peripheral immune cell responses were analyzed using untargeted mass spectrometry, aptamer-based proteomic technology, and single-cell mass cytometry in serial blood samples collected during the last 100 days of pregnancy. The high-dimensional dataset was integrated into a multiomic model that predicted the time to spontaneous labor [R = 0.85, 95% confidence interval (CI) [0.79 to 0.89], P = 1.2 × 10−40, N = 53, training set; R = 0.81, 95% CI [0.61 to 0.91], P = 3.9 × 10−7, N = 10, independent test set]. Coordinated alterations in maternal metabolome, proteome, and immunome marked a molecular shift from pregnancy maintenance to prelabor biology 2 to 4 weeks before delivery. A surge in steroid hormone metabolites and interleukin-1 receptor type 4 that preceded labor coincided with a switch from immune activation to regulation of inflammatory responses. Our study lays the groundwork for developing blood-based methods for predicting the day of labor, anchored in mechanisms shared in preterm and term pregnancies

    Morphological changes in diabetic kidney are associated with increased O-GlcNAcylation of cytoskeletal proteins including α-actinin 4

    Get PDF
    Abstract Purpose The objective of the present study is to identify proteins that change in the extent of the modification with O-linked N-acetylglucosamine (O-GlcNAcylation) in the kidney from diabetic model Goto-Kakizaki (GK) rats, and to discuss the relation between O-GlcNAcylation and the pathological condition in diabetes. Methods O-GlcNAcylated proteins were identified by two-dimensional gel electrophoresis, immunoblotting and peptide mass fingerprinting. The level of O-GlcNAcylation of these proteins was examined by immunoprecipitation, immunoblotting and in situ Proximity Ligation Assay (PLA). Results O-GlcNAcylated proteins that changed significantly in the degree of O-GlcNAcylation were identified as cytoskeletal proteins (α-actin, α-tubulin, α-actinin 4, myosin) and mitochondrial proteins (ATP synthase β, pyruvate carboxylase). The extent of O-GlcNAcylation of the above proteins increased in the diabetic kidney. Immunofluorescence and in situ PLA studies revealed that the levels of O-GlcNAcylation of actin, α-actinin 4 and myosin were significantly increased in the glomerulus and the proximal tubule of the diabetic kidney. Immunoelectron microscopy revealed that immunolabeling of α-actinin 4 is disturbed and increased in the foot process of podocytes of glomerulus and in the microvilli of proximal tubules. Conclusion These results suggest that changes in the O-GlcNAcylation of cytoskeletal proteins are closely associated with the morphological changes in the podocyte foot processes in the glomerulus and in microvilli of proximal tubules in the diabetic kidney. This is the first report to show that α-actinin 4 is O-GlcNAcylated. α-Actinin 4 will be a good marker protein to examine the relation between O-GlcNAcylation and diabetic nephropathy.</p

    Synthesis of Thiazolo[5,4-f]quinazolin-9(8H)-ones as Multi-Target Directed Ligands of Ser/Thr Kinases

    No full text
    A library of thirty novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives belonging to four series designated as 12, 13, 14 and 15 was efficiently prepared, helped by microwave-assisted technology when required. The efficient multistep synthesis of methyl 6-amino-2-cyano- benzo[d]thiazole-7-carboxylate (1) has been reinvestigated and performed on a multigram scale. The inhibitory potency of the final products against five kinases involved in Alzheimer’s disease was evaluated. This study demonstrates that some molecules of the 12 and 13 series described in this paper are particularly promising for the development of new multi-target inhibitors of kinases
    • …
    corecore