801 research outputs found
Pair formation and collapse in imbalanced Fermion populations with unequal masses
We present an exact Quantum Monte Carlo study of the effect of unequal masses
on pair formation in Fermionic systems with population imbalance loaded into
optical lattices. We have considered three forms of the attractive interaction
and find in all cases that the system is unstable and collapses as the mass
difference increases and that the ground state becomes an inhomogeneous
collapsed state. We also address the question of canonical vs grand canonical
ensemble and its role, if any, in stabilizing certain phases
Propagation dynamics on networks featuring complex topologies
Analytical description of propagation phenomena on random networks has
flourished in recent years, yet more complex systems have mainly been studied
through numerical means. In this paper, a mean-field description is used to
coherently couple the dynamics of the network elements (nodes, vertices,
individuals...) on the one hand and their recurrent topological patterns
(subgraphs, groups...) on the other hand. In a SIS model of epidemic spread on
social networks with community structure, this approach yields a set of ODEs
for the time evolution of the system, as well as analytical solutions for the
epidemic threshold and equilibria. The results obtained are in good agreement
with numerical simulations and reproduce random networks behavior in the
appropriate limits which highlights the influence of topology on the processes.
Finally, it is demonstrated that our model predicts higher epidemic thresholds
for clustered structures than for equivalent random topologies in the case of
networks with zero degree correlation.Comment: 10 pages, 5 figures, 1 Appendix. Published in Phys. Rev. E (mistakes
in the PRE version are corrected here
A shadowing problem in the detection of overlapping communities: lifting the resolution limit through a cascading procedure
Community detection is the process of assigning nodes and links in
significant communities (e.g. clusters, function modules) and its development
has led to a better understanding of complex networks. When applied to sizable
networks, we argue that most detection algorithms correctly identify prominent
communities, but fail to do so across multiple scales. As a result, a
significant fraction of the network is left uncharted. We show that this
problem stems from larger or denser communities overshadowing smaller or
sparser ones, and that this effect accounts for most of the undetected
communities and unassigned links. We propose a generic cascading approach to
community detection that circumvents the problem. Using real and artificial
network datasets with three widely used community detection algorithms, we show
how a simple cascading procedure allows for the detection of the missing
communities. This work highlights a new detection limit of community structure,
and we hope that our approach can inspire better community detection
algorithms.Comment: 14 pages, 12 figures + supporting information (5 pages, 6 tables, 3
figures
The eSMAF: a software for the assessment and follow-up of functional autonomy in geriatrics
BACKGROUND: Functional status or disability forms the core of most assessment instruments used to identify mix and level of resources and services needed by older adults who possess common characteristics. The Functional Autonomy Measurement System (SMAF) is a 29-item scale measuring functional ability in five different areas. It has been recommended for use for home care, for allocation of chronic beds, for developing care plans in institutional settings and for epidemiological and evaluative studies. The SMAF can also be used with a case-mix classification system (Iso-SMAF) to allocate resources based on patients' functional autonomy characteristics. The objective of this project was to develop a software version of the SMAF to facilitate the evaluation of the functional status of older adults in health services research and to optimize the clinical decision-making process. RESULTS: The eSMAF was developed over an 24-month period using a modified waterfall software engineering process. Requirements and functional specifications were determined using focus groups of stakeholders. Different versions of the software were iteratively field-tested in clinical and research environments and software adaptations made accordingly. User documentation and online help were created to assist the deployment of the software. The software is available in French or English versions under a 30-day unregistered demonstration license or a free restricted registered academic license. It can be used locally on a Windows-based PC or over a network to input SMAF data into a database, search and aggregate client data according to clinical and/or administrative criteria, and generate summary or detailed reports of selected data sets for print or export to another database. CONCLUSION: In the last year, the software has been successfully deployed in the clinical workflow of different institutions in research and clinical applications. The software performed relatively well in terms of stability and performance. Barriers to implementation included antiquated computer hardware, low computer literacy and access to IT support. Key factors for the deployment of the software included standardization of the workflow, user training and support
Constrained-path quantum Monte Carlo simulations of the zero-temperature disordered two-dimensional Hubbard model
We study the effects of disorder on long-range antiferromagnetic correlations
in the half-filled, two dimensional, repulsive Hubbard model at T=0. A mean
field approach is first employed to gain a qualitative picture of the physics
and to guide our choice for a trial wave function in a constrained path quantum
Monte Carlo (CPQMC) method that allows for a more accurate treatment of
correlations. Within the mean field calculation, we observe both Anderson and
Mott insulating antiferromagnetic phases. There are transitions to a paramagnet
only for relatively weak coupling, U < 2t in the case of bond disorder, and U <
4t in the case of on-site disorder. Using ground-state CPQMC we demonstrate
that this mean field approach significantly overestimates magnetic order. For
U=4t, we find a critical bond disorder of Vc = (1.6 +- 0.4)t even though within
mean field theory no paramagnetic phase is found for this value of the
interaction. In the site disordered case, we find a critical disorder of Vc =
(5.0 +- 0.5)t at U=4t.Comment: Revtex, 13 pages, 15 figures. Minor changes to title and abstract,
discussion and references added, figures 5, 6, 8, 9 replaced with easier to
read version
Study of the Fully Frustrated Clock Model using the Wang-Landau Algorithm
Monte Carlo simulations using the newly proposed Wang-Landau algorithm
together with the broad histogram relation are performed to study the
antiferromagnetic six-state clock model on the triangular lattice, which is
fully frustrated. We confirm the existence of the magnetic ordering belonging
to the Kosterlitz-Thouless (KT) type phase transition followed by the chiral
ordering which occurs at slightly higher temperature. We also observe the lower
temperature phase transition of KT type due to the discrete symmetry of the
clock model. By using finite-size scaling analysis, the higher KT temperature
and the chiral critical temperature are respectively estimated as
and . The results are in favor of the double
transition scenario. The lower KT temperature is estimated as .
Two decay exponents of KT transitions corresponding to higher and lower
temperatures are respectively estimated as and
, which suggests that the exponents associated with the KT
transitions are universal even for the frustrated model.Comment: 7 pages including 9 eps figures, RevTeX, to appear in J. Phys.
Epidemiology of paraneoplastic neurologic syndromes and autoimmune encephalitides in France
OBJECTIVE: To determine the observed and expected incidence rates of paraneoplastic neurologic syndromes (PNSs) and autoimmune encephalitides (AEs) diagnosed in France between 2016 and 2018, we conducted a population-based epidemiologic study. METHODS: Observed incidence rates were stratified by sex, age groups, region of care, year of diagnosis, and disease subgroups. National expected incidence rates were calculated based on rates obtained in the area directly adjacent to the Reference Center using a mixed Poisson model and compared with observed incidence rates. RESULTS: Six hundred thirty-two patients with definite PNS or AE met the inclusion criteria. The observed incidence rate of definite PNS and AE in France was 3.2 per million person-years (CI95%: 2.9-3.4) compared with an expected incidence rate of 7.1 per million person-years (CI95%: 3.9-11.4). The national observed incidence rate for the antibody-positive AE subgroup increased from 1.4 per million person-years (CI95%: 1.2-1.7) in 2016 to 2.1 per million person-years (CI95%: 1.7-2.4) in 2018, thus surpassing the incidence rate of classical PNS (1.2 per million person-years [CI95%: 1.0-1.5]) of 2018. CONCLUSIONS: There was a significant widespread year-to-year increase in the incidence of diagnoses registered with the Reference Center for all subgroups of PNS and AE studied. The national observed incidence rate is likely underestimated due to underdiagnosis and underreporting
"Pudding mold" band drives large thermopower in NaCoO
In the present study, we pin down the origin of the coexistence of the large
thermopower and the large conductivity in NaCoO. It is revealed that
not just the density of states (DOS), the effective mass, nor the band width,
but the peculiar {\it shape} of the band referred to as the "pudding
mold" type, which consists of a dispersive portion and a somewhat flat portion,
is playing an important role in this phenomenon. The present study provides a
new guiding principle for designing good thermoelectric materials.Comment: 5 page
Finite temperature phase diagram of spin-1/2 bosons in two-dimensional optical lattice
We study a two-species bosonic Hubbard model on a two-dimensional square
lattice by means of quantum Monte Carlo simulations and focus on finite
temperature effects. We show in two different cases, ferro- and
antiferromagnetic spin-spin interactions, that the phase diagram is composed of
solid Mott phases, liquid phases and superfluid phases. In the
antiferromagnetic case, the superfluid (SF) is polarized while the Mott
insulator (MI) and normal Bose liquid (NBL) phases are not. On the other hand,
in the ferromagnetic case, none of the phases is polarized. The
superfluid-liquid transition is of the Berezinsky-Kosterlitz-Thouless type
whereas the solid-liquid passage is a crossover.Comment: 9 pages, 13 figure
Nature of the quantum phase transitions in the two-dimensional hardcore boson model
We use two Quantum Monte Carlo algorithms to map out the phase diagram of the
two-dimensional hardcore boson Hubbard model with near () and next near
() neighbor repulsion. At half filling we find three phases: Superfluid
(SF), checkerboard solid and striped solid depending on the relative values of
, and the kinetic energy. Doping away from half filling, the
checkerboard solid undergoes phase separation: The superfluid and solid phases
co-exist but not as a single thermodynamic phase. As a function of doping, the
transition from the checkerboard solid is therefore first order. In contrast,
doping the striped solid away from half filling instead produces a striped
supersolid phase: Co-existence of density order with superfluidity as a single
phase. One surprising result is that the entire line of transitions between the
SF and checkerboard solid phases at half filling appears to exhibit dynamical
O(3) symmetry restoration. The transitions appear to be in the same
universality class as the special Heisenberg point even though this symmetry is
explicitly broken by the interaction.Comment: 10 pages, 14 eps figures, include
- …