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Analytical description of propagation phenomena on random networks has flourished in recent years, yet
more complex systems have mainly been studied through numerical means. In this paper, a mean-field de-
scription is used to coherently couple the dynamics of the network elements �such as nodes, vertices, individu-
als, etc.� on the one hand and their recurrent topological patterns �such as subgraphs, groups, etc.� on the other
hand. In a susceptible-infectious-susceptible �SIS� model of epidemic spread on social networks with commu-
nity structure, this approach yields a set of ordinary differential equations for the time evolution of the system,
as well as analytical solutions for the epidemic threshold and equilibria. The results obtained are in good
agreement with numerical simulations and reproduce the behavior of random networks in the appropriate limits
which highlights the influence of topology on the processes. Finally, it is demonstrated that our model predicts
higher epidemic thresholds for clustered structures than for equivalent random topologies in the case of
networks with zero degree correlation.
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I. INTRODUCTION

Description of propagation phenomena has been one of
the most prolific fields in complex network theory mostly
because of the range of possible applications: epidemic con-
trol, spread of information, virus, or pollutant propagation in
electronic or biological networks �1�. Most analytical models
are based on the random network �RN� paradigm: from the
point of view of the propagating agent, random networks are
seen as identical for every newly infected individual because
of their treelike structure �i.e., no loops�. This approach has
given rise to different descriptions: some are based on a com-
partmentalization of nodes according to their state �2� and
others on the generating function formalism �3–6� or hybrid
descriptions using mean-field theory �7,8�; yet all approaches
are difficult to generalize to real networks for which the RN
paradigm rarely applies.

The importance of topology for propagation dynamics
�4,7,9–13�, and more specifically, the importance of cluster-
ing �14–19�, is now well established. That is, the dynamics
on the network is far from independent on how links are
arranged between its elements. Furthermore, most real net-
works feature a significant amount of substructures that sim-
ply cannot be ignored as they define the very identity of the
networks. The multiprotein units of molecular biology
�20,21�, the coupling of a given set of stocks �22,23�, or the
groups of highly connected individuals �19,24� are all good
examples of how precise mechanisms �e.g., the friend of my
friend is my friend� give rise to important structures within a
seemingly random topology.

The two limits of complex networks, complete random-
ness and perfect order, can be treated with the previously
discussed methods. We will concentrate on those particular
complex networks, located somewhere between order and
disorder, and show how their topology can be taken into
account in dynamical problems. In doing so, the language of
social networks and epidemics will be used to take advantage
of its eloquence and clarity. It should be clear however that
the formalism developed is general to many types of net-
works and propagation phenomena.

The paper is structured as follows. The particular topol-
ogy chosen to illustrate our approach, the community struc-

ture �CS�, is described in Sec. II. The analytical model is
then developed in Sec. III where we also obtain analytical
solutions for the equilibria and epidemic threshold of the
system. Section IV compares our analytical results with nu-
merical Monte Carlo �MC� simulations and presents discus-
sions of our findings. After presenting our conclusions in
Sec. V, an Appendix completes our analysis of propagation
phenomena on community structure.

II. COMMUNITY STRUCTURE

In what follows, an analytical �mean-field� approach to
describe dynamical problems on complex topologies will be
used to solve a disease propagation model on social networks
featuring a well-known topology: the community structure.
We define this particular arrangement of nodes by their ag-
gregation in highly connected groups. These communities �or
cliques� can virtually represent a person’s family, workplace,
collection of friends, etc. This simple concept results in a
network with highly connected communities and a sparser
density of links between them �see Fig. 1�. The topology of
such networks has been studied at some length: for its initial
description, see �25�; for its statistical significance, see �26�;
for its detection or characterization, see �27–31�; and refer-
ences therein for an exhaustive presentation.

Unfortunately, not unlike other complex types of net-
works, studies of dynamical processes on this topology have
been mainly limited to numerical simulations �e.g., �32��.
Albeit useful to estimate its effect on the dynamics, they lack
the clarity of an analytical framework. On the other hand,
mean-field description of propagation phenomena in terms of
communities �or households� has been previously attempted
in �33–35� with several shortcomings such as homogeneous
topology, lack of the concept of individuals, or inefficient
moment closure approximations. Hence, there is a need for
an analytical approach that can accurately take into account
the many complexities of social networks in order to de-
scribe the time evolution of the system. Because community
structure typically includes clustering and degree correlation,
our formalism will include the coherent contribution of both
properties.
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A useful model of social topology was published by New-
man in �18�. The networks are constructed as follows: each
individual belongs to m cliques and each clique holds n in-
dividuals, where both m and n are taken from given distri-
butions. Within every clique, each pair of members has a
probability � of being acquainted. Hence, the entire topology
is defined by one parameter � and two probability distribu-
tions �gm� and �pn� generated by the following probability
generating functions �PGFs�:

P0�z� = �
n=0

�

pnzn, �1�

G0�z� = �
m=0

�

gmzm, �2�

which are simply built from the probabilities pn and gm that
a random clique or individual will have n participants or m
cliques, respectively. Similar functions can be defined to gen-
erate the probabilities that a random clique of a random in-
dividual is shared by n−1 other participants or that a random
individual in a random clique participates in m−1 other
cliques. We simply note that these quantities are proportional
to npn or mgm and thus find our second set of PGFs,

P1�z� =

�
n

npnzn−1

�
n

npn

=
P0��z�
P0��1�

= �−1P0��z� , �3�

G1�z� =

�
m

mgmzm−1

�
m

mgm

=
G0��z�
G0��1�

= �−1G0��z� , �4�

where � and � are the mean numbers of individuals per
clique and cliques per individual used to normalize the dis-
tributions, respectively. Note that the mean of a distributed
quantity is simply given by the derivative of the correspond-
ing PGF evaluated at unity. The following topological prop-
erties have already been derived in �18,19�: degree distribu-
tion, size of the giant component, clustering coefficient, and
degree correlation. Some of these results are used throughout
this paper.

Newman’s model, although realistic because of its over-
lapping communities, is strongly limited since links only
arise through communities. A node belonging to a single
clique does not participate at all in the coupling, while a
node belonging to two cliques or more will have a huge
influence. Hence, it is hard to describe weakly coupled com-
munities of significant sizes using this particular topology.
Consequently, we will introduce a more general description
of community structure where exterior random links are also
allowed. We simply add a distribution for the number of
random links per individual, which is generated by

K0�z� = �
l=0

�

klz
l. �5�

Our networks will thus be defined by the � probability and
three distributions for the numbers of individuals per clique
�Eq. �1��, cliques per individual �Eq. �2��, and random links
per individual �Eq. �5��. Intuition indicates that a large num-
ber of networks can be decomposed as basic structures
coupled either by sharing nodes, by forced connections, or
by a combination of both. In fact, many of the previously
cited papers study networks where nodes belong to a single
clique coupled only by random links with the outside world
�e.g., �15,29��. Our general model includes this topology and
Newman’s original model as special cases.

III. SUSCEPTIBLE-INFECTIOUS-SUSCEPTIBLE
DYNAMICS ON COMMUNITY STRUCTURE

A. Construction of the dynamical model

The philosophy behind our formalism is to analyze the
network simultaneously from two perspectives, i.e., the state
of the network is followed from the point of view of recur-
rent patterns in its topology and of the elements themselves.
More precisely, we compartmentalize both the structure and
the node ensemble in terms of their relation to one another
and couple the two systems to give a complete description of
the propagation phenomenon. For social networks featuring
community structure, the recurrent patterns are cliques of
individuals that can be distinguished by their size and their
state. The elements are individuals distinguishable by the
number of cliques to which they belong and by their number
of exterior random links. That is, the mean state of a given
class of individuals will act as if all of their cliques and

FIG. 1. �Color online� Schematization of the particular topology
studied in this paper. An open mark represents a susceptible indi-
vidual; a shaded one, an infectious; and a black one, a group �or
clique�. The topology is constructed by allowing individuals to be-
long to a given number of cliques where they can be linked to other
participants �solid lines� and then randomly assigning random exte-
rior neighbors �dotted lines�. Note that in the formalism, the cliques
are differentiable by their exact population and state, while the pre-
cise connections between them remain unspecified and they are
simply linked to a mean field.
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random links were approximated by a mean field and the
mean state of a given class of cliques will act as if all indi-
viduals were also reduced to a mean-field approximation.
The behaviors of both cliques and individuals are coupled in
terms of their connections via generating functions �1�–�5�.

The particular case under study is a susceptible-
infectious-susceptible �SIS� model of disease propagation. In
continuous time, an infectious node may pass the disease to
any of its susceptible neighbors at a rate � �S→ I�, while it is
recovering from the disease at a rate r �I→S�. Given initial
conditions, we are interested in developing a system of equa-
tions capable of following the state I�t� of the network,
where I�t� is the fraction of infectious individuals at a given
time. According to our philosophy, we thus need to follow
both individuals and cliques. Let Sm,l�t� be the proportion of
individuals which belong to m cliques, have l random links,
and are susceptible at time t and Cn,i�t� be the proportion of
cliques whose population is n and of which i individuals are
infectious at time t. For the sake of clarity, we will not ex-
plicitly mark the time dependence, �t�, when it is obvious
that the quantity is a dynamical variable.

First, we need to describe how the generating functions
G1�z�, K0�z�, and P1�z� will differ depending on the state of
the involved individual. To define the dynamical generating
functions, it is possible to either follow the distributions for
the susceptibles or the infectious individuals since Sm,l+ Im,l
=gmkl. We will follow the susceptibles. We then need the
distribution of cliques reached from a susceptible individual
of a given clique. This distribution will be affected by �Sm,l�
in the following manner: a random individual has probability
mgm of belonging to �m−1� other cliques, but consequently,
only a probability �lSm,l /gm of being susceptible at time t.
The reasoning is even simpler for K0�z� as the distribution is
not affected by the knowledge that the individual belongs to
at least one clique. We can directly write

G̃1�z;t� =

�
m,l

mSm,lz
m−1

�
m,l

mSm,l

, �6�

K̃0�z;t� =

�
m,l

Sm,lz
l

�
m,l

Sm,l

, �7�

where the tilde denotes that the function generates a distri-
bution which applies to susceptible individuals only. In a
similar fashion, the knowledge that a clique is reached by a
link emerging of a susceptible individual will affect the dis-
tribution of this clique’s number of susceptible individuals.
The probability that a susceptible individual belongs to a
clique of state �n , i� is directly proportional to the number of
susceptible members of that particular state. In order to con-
sider only susceptible individuals, the P1�x ,y� generating
function must be modified accordingly to the number of sus-
ceptible members belonging to each compartment,

P̃1�x,y ;t� =

�
n,i

�n − i�Cn,ix
nyi

�
n,i

�n − i�Cn,i

. �8�

Four interesting and important quantities can be derived
from these dynamical generating functions. First, the average
number of infectious neighbors per clique and per random
link for a susceptible individual, R�t� and T�t�,

R�t� =

� �
n,i

i�n − i�Cn,i

�
n,i

�n − i�Cn,i

, �9�

T�t� =

�
n,i

i

n
�nCn,i�

�
n,i

nCn,i

. �10�

Second, the mean number of excess infectious neighbors per
clique and per random link for a susceptible individual of a
given clique, ��t� and ��t�,

��t� = G̃1��1;t�R�t� , �11�

��t� = K̃0��1;t�T�t� , �12�

where the primes denote a derivative with respect to z, so

that G̃1��1; t� is the average number of outside cliques for a
susceptible member of a given clique at time t.

Let us now construct the differential equation governing
�Sm,l�. We previously mentioned that the disease spreads
through any link between a susceptible and an infectious
individual. Thus, with R�t� being the average number of such
links that a susceptible may have in a single clique, the rate
at which the class of individuals belonging to m cliques is
infected, is proportional to −�mSm,lR�t�. Similarly, with T�t�
being the probability that a random link leads to an infec-
tious individual, the rate of infection for individuals with l
random links must be proportional to −�lSm,lT�t�. Simulta-
neously, the same ratio increases as the infected nodes re-
cover at a speed r�1−Sm,l�. Therefore, the set of equations
governing the point of view of the individuals is simply ob-
tained by summing the contributions from these three pro-
cesses,

dSm,l

dt
= r�1 − Sm,l� − �Sm,l�mR�t� + lT�t�� . �13�

Similar considerations are needed to define the dynamics of
the Cn,i values. A clique in a �n , i� state can either pass to
�n , i+1� by infection �if i�n� or to �n , i−1� by recovery �if
i	0�. The first process is proportional to the sum of the
number of links between infectious and susceptible individu-
als within the cliques and the number of links with infectious
neighbors that each susceptible might have outside the con-
sidered clique. For a given �n , i� compartment, infection can
either bring new cliques from the �n , i−1� state or cause the
cliques to pass to the more infectious �n , i+1� compartment,
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dCn,i

dt

 ��n − i + 1����i − 1� + ��t� + ��t��Cn,i−1

− ��n − i���i + ��t� + ��t��Cn,i. �14�

The contribution of the recovery process is easy to explicit
using the same logic, as it is simply proportional to the num-
ber of infectious individuals who might recover,

dCn,i

dt

 r�i + 1�Cn,i+1 − riCn,i. �15�

Summing the contributions of both the infections in Eq. �14�
and the recoveries in Eq. �15� yields the desired differential
equation for the clique dynamics,

dCn,i

dt
= r�i + 1�Cn,i+1 − riCn,i

+ ��n − i + 1����i − 1� + ��t� + ��t��Cn,i−1

− ��n − i���i + ��t� + ��t��Cn,i, �16�

where Cn,i is defined only for i� �0,n�. Coupled with Eq.
�13�, we now have a complete dynamical system for the state
of the network in a SIS model of disease spread.

If desired, the mean fraction of infectious individuals of a
given class of cliques can be obtained in a straightforward
manner with

In = �
i

1

npn
iCn,i. �17�

It is generally simpler to characterize the state of the network
via the total fraction of infectious, I�t�, or susceptible, S�t�,
individuals. From Eq. �13�, we directly have

S�t� = �
m,l

Sm,l; I�t� = �
m,l

�1 − Sm,l� . �18�

Note that a straightforward evaluation of the global state of
the network from �Cn,i� would be biased because an indi-
vidual belonging to m cliques would be counted m times
more than an individual participating to a single clique.

B. Solution for network stable state

The system defined by Eqs. �13� and �16� can be solved as
a traditional self-consistent field by looking for a solution in
terms of � and �. Using Eq. �16� for the Cn,i quantities at
equilibrium �i.e., dCn,i /dt=0�, we obtain the following recur-
sive solution:

Cn,i+1
� =

1

�i + 1�r
��fn,i + ri�Cn,i

� − fn,i−1Cn,i−1
� � �19�

with Cn,i=0 ∀ i� �0,n� and where we introduce a matrix
of infection �fn,i� whose elements depend on the total mean-
field �,

fn,i � ��n − i��i� + ��� , �20�

�� � �� + ��. �21�

Asterisks will hereafter refer to values at equilibrium. Equa-
tion �19� can be used to fix the stable values of all the Cn,i

�

relative to Cn,0
� , which can then be solved exactly by apply-

ing the following topological constraint:

�
i

Cn,i = pn, ∀ t,n . �22�

Using the equilibrium condition in Eq. �13� provides a direct
solution for the Sm,l

� ensemble,

Sm,l
� =

r

��mR� + lT�� + r
. �23�

It is then possible to write R�, T�, G̃1
��z�, and K̃0

��z� in terms
of �� and �� by using Eq. �19� in Eqs. �9� and �10� while
using Eq. �23� in Eqs. �6� and �7�. A transcendental equation
is obtained for �� by writing Eqs. �11� and �12� as

�� = 	�
m,l

m�m − 1�Sm,l
�

�
m,l

mSm,l
� 
R� + 	�

m,l
lSm,l

�

�
m,l

Sm,l
� 
T� � F���� ,

�24�

where the dependence on �� comes from that of �Sm,l
� � on R�

and T� written in terms of �Cn,i
� � which are a direct function

of ��. Solving for �� yields a unique nonzero solution fixing
�Cn,i

� � which in turn provide the values for R� and T�. This
directly fixes �Sm,l

� � using Eq. �23� and thus the stable state of
the network defined by Eq. �18�.

Clearly the dynamics is governed by the ratio ��� /r and
not the individual rates. Therefore, under the transformation
to the normalized propagation rate �, our model admits a
single independent parameter in its dynamics.

C. Solution for epidemic threshold

The epidemic threshold �c is defined by a phase transition
in the normalized infection rate where a macroscopic final
epidemic size first appears. Here, it can be defined math-
ematically using the analytic solution for the stable state of
the SIS epidemic. Equation �24� behaves as shown in Fig. 2
with a trivial solution at ��=0 and another possible solution

0

1

2

3

4

5

0 1 2 3 4 5
ξ*

F(ξ*)

λ > λc

λ < λc

FIG. 2. �Color online� Function F���� is shown in shade on the
topology defined in Eq. �32� for two different normalized propaga-
tions rates: �=0.02 in dotted line �under the threshold; no solution
for ��	0� and �=0.1 in solid line �epidemic�. The black solid line
is the curve of slope 1, F����=��.

HÉBERT-DUFRESNE et al. PHYSICAL REVIEW E 82, 036115 �2010�

036115-4



��	0 depending on � and the topology. Since F���� is a
monotonously increasing function, �c can be found by the
following condition:

d

d��
F�������=0 = 1. �25�

For initial derivative value above unity, a solution ��	0 ex-
ists and the stable epidemic state is nonzero �Fig. 2�. For a
system subject to a propagation at its threshold, by definition,
we know that the stable state is the trivial solution Cn,i

�

= pni0 ∀ �n , i� and Sm,l
� =gmkl ∀ �m , l� �which implies

G̃1�z ; t�=G1�z� and K̃0�z ; t�=K0�z��. It follows that the mean-
field values are zero at equilibrium and Eq. �25� straightfor-
wardly becomes

1

�
�
n,i
���i�n − i�G1��1� + iK0��1��

d

d��
Cn,i

� �
��=0

= 1. �26�

Using Eq. �19� to evaluate the derivative at equilibrium, one
finds that ∀ i	0,

� d

d��
Cn,i

� ���=0 =
pn

i
�c

i �i−1 n!

�n − i�!
. �27�

Using Eq. �27� to solve Eq. �26� for �c provides a polynomial
with positive coefficients for terms of order 1 or more,

1

�
�

n,i	0
pn���c�i n!

�n − i�!
�n − i�G1��1� +

K0��1�
�

� = 1. �28�

This polynomial therefore has a single real positive solution,
which is the epidemic threshold of the network. For random
networks, one can set K0��1�=0, �=1, and pn=n,2 so that all
links are shared within cliques of size two. Equation �28�
then reduces to

G1��1��c
RN = 1, �29�

where G1��1� is here the mean excess degree. From Eq. �29�,
one can deduce that our model predicts a vanishing SIS epi-
demic threshold if G1��1� diverges. For scale-free networks,
the degree distribution falls as k−s and it is easily shown that
G1��1� �see Eq. �4�� does indeed diverge if s�3. Our model
therefore leads to the same conclusion as in �36�: scale-free
networks with degree distribution 
k−s with s�3 possess no
epidemic threshold.

An expression for the SIS epidemic threshold on random
networks has recently been derived in �37� under the condi-
tions of discrete time steps and a constant recovery period.
Equation �28� provides the epidemic threshold for a continu-
ous time SIS model on random and community-structured
networks.

IV. IMPLEMENTATION AND VALIDATION

A. Treatment of the analytical model

In order to highlight the difference between RN and CS,
both types of networks will be studied analytically and nu-
merically. The CS network will be compared with its equiva-
lent random network �ERN�: a network with exactly the

same degree distribution but with randomly connected nodes
�zero degree correlation�. Note that on our general model of
community structure, the PGF for the degree distribution is
simply generated by �18�

G0„P1�1 + �z − 1���…K0�z� . �30�

To describe an ERN with this distribution, two simple op-
tions are available. First, one can set P0

ERN�z�=z2 and
K0

ERN�z�=1 with �ERN=1 so that all cliques are of size two
�i.e., regular links� and then choose the gm distribution equal
to initial degree distribution �30� of the CS network. Second,
one can set P0

ERN�z�=z and G0
ERN�z�=z with any �ERN so that

all cliques are of size one �i.e., simple nodes� and then
choose the kl distribution equal to initial degree distribution
�30�. Both will be used in what follows.

The time evolution of the analytical system is obtained
from an integration based on a fourth-order Runge-Kutta al-
gorithm with adaptive time steps. The initial condition I�0� is
uniformly distributed among the nodes. That is, Sm,l�0�
=gmkl�1− I�0�� for all �m , l�, while �Cn,i�0�� are given by a
simple Bernoulli trial,

Cn,i�0� = pnn

i
��I�0��i�1 − I�0��n−i. �31�

B. Numerical model

To perform MC simulations of the model, we have gen-
erated networks with the structure presented in Sec. II via the
following numerical algorithm: �i� generate a sequence �mi�
of length N subjected to distribution �gm�; �ii� generate a
sequence �nj� subjected to distribution �pn� until � jnj =�imi;
�iii� for each i, produce mi individuals tagged as i; �iv� for
each j, produce nj groups tagged as j; �v� randomly assign
each individual to a group; �vi� for each i, list every i as-
signed to the nj groups and link them to one another with
probability �; �vii� generate a sequence �ls� of length N sub-
jected to the distribution �kl� under condition that �sls is
even; �viii� for each s, produce ls stubs tagged as s; and �ix�
randomly link all stubs in pairs.

The final ensemble of links presents a topology as shown
in Fig. 1 with a degree distribution generated by Eq. �30�
where nodes are highly clustered, but the clique concept it-
self is invisible. Each and every network generated by this
procedure is accepted and kept in the results, as they are part
of the canonical ensemble considered by the mean-field ap-
proach of the formalism. For every generated network, a
fraction I�0� of individuals are randomly chosen to be ini-
tially infectious and the dynamics is then simulated in a dis-
crete time propagation simulation valid for a time step �t
→0 �we choose �t such that ��t and r�t are less than 10−3�:
�i� at each �t, every susceptible neighbor of every infectious
individual is infected with probability ��t and �ii� at each �t
every infectious individual recovers with probability r�t.

Finally, for each constructed network, the final degree dis-
tribution is used to generate an ERN for comparison.

C. Results on Newman’s topology

The first topology chosen to test the formalism is the spe-
cial model presented in �18�, which does not allow random
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links and is thus obtained by setting K0�z�=1 �i.e., all links
are shared within a clique�. We will then use �=0.8, a power-
law distribution for the numbers of cliques per individual and
a Poisson distribution for the numbers of individuals per
clique,

gm 
 m−1e−m/1.2; pn 

20n

n!
e−20. �32�

This topology results in a degree distribution generated by
the following function:

G0„P1�1 + �z − 1���… =
ln�1 − e20��z−��e−5/6�

ln�1 − e−5/6�
. �33�

This heterogeneous distribution is shown in Fig. 3. To follow
the propagation dynamics on an ERN, we use the first of the
two options previously presented: all cliques are of size two
with �ERN=1 and a distribution �gm� equivalent to Eq. �33�.

Our results on this topology �Fig. 4� confirm that our for-
malism is indeed capable of following the time evolution of
the network in structured and random topologies. Further-

more, both our numerical and analytical results support the
conclusions in �32,35,38� as will be discussed below.

First, as evident in Fig. 4�a�, the community structure
does not significantly change the stable state of the system.
This conclusion is only valid when the giant components of
CS and of the ERN have approximately the same size and
under condition that the network is well connected. In physi-
cal terms, this means that the coupling must be sufficiently
high between the subsystems, relative to the strength of the
interaction �i.e., ��. If this condition is not fully met, subsets
of the canonical distribution of configurations �i.e., ones with
higher number of independent cliques� will have stable states
under the predicted value and will decrease the mean value.
The reduction of the giant component was already explained
in �18�. This effect is visible in both analytical and numerical
results of Fig. 4�a� for lower infection rate and eventually
leads to a higher epidemic threshold for networks with com-
munity structure.

This particular property seems to contradict a major con-
clusion in �18�, yet it is important to take into account that
the conclusion that clustering lowers the epidemic threshold
was made on networks featuring different degree distribu-
tions �see �39� for a complete discussion� and featuring de-
gree correlation �see �14� for an analysis of correlation and
clustering effects�. Our results show that, given an identical
degree distribution and zero degree correlation, the random
networks will have a lower epidemic threshold than a net-
work featuring community structure. This conclusion is in-
tuitive because links shared in community have a higher
probability of being “wasted” �i.e., of leading to another in-
fectious node� than a random link, independently of the
transmissibility. The mechanism behind this phenomenon is
simple: there is a higher probability that neighbors of a new
infectious individual will also be infectious if these individu-
als are connected in groups. This leads to a lower mean
epidemic size for low infection rate and to the observed
higher epidemic threshold. Note that, within the community
structure effects observed here, the individual effects of clus-
tering and degree correlation cannot be separated. The dem-
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FIG. 3. �Color online� Degree distribution in the infinite net-
work limit of the chosen topologies: Eq. �33� is shown by a solid
shaded line while Eq. �35� is shown by a dotted black line. Note the
periodic local maxima corresponding to each m value.

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

λ

I*

CS
ERN

0

0.05

0.034 0.037

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5

t

I

CS
ERN

(a) (b)

FIG. 4. �Color online� Comparisons of analytical and numerical results on a network defined by Eq. �32� using normalized dynamics
�t→rt and �=� /r�. �a� Analytical stable states �curves� and epidemic thresholds �vertical lines at �c
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�b� Time evolution �curves� and analytical equilibrium �horizontal line� for �=0.5. On both figures, the results are shown in solid shade for
the CS and in dotted black line for the ERN. Numerical results are presented by markers and are averaged over 20 000 networks of 25 000
nodes. The standard deviation is smaller than the marker size.
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onstration given in the Appendix shows that, for networks
with zero degree correlation, our model always predicts a
higher epidemic threshold for networks with clustering than
for equivalent random networks. However, it should be em-
phasized that correlation effects alone have been shown to
lower the percolation threshold �40�. As similar effects can
take place on networks with community structure, our con-
clusion is not directly generalizable to networks with non-
zero degree correlation.

Second, as seen in Fig. 4�b�, the community structure in-
creases the relaxation time of the system; i.e., it slows the
disease propagation toward the equilibrium. This phenom-
enon is also explained by the higher number of wasted links
on a community structure than on the equivalent random
network. These links are very frequent in social networks
because of community structure where “the friend of my
friend is also my friend.” When counting new possible infec-
tions on networks with exactly the same degree distribution,
the number of second neighbors will be higher in a random
network than on a community structure because the neigh-
bors of my neighbor may have already been counted as my
neighbor in the CS network. This results in a slower propa-
gation and a typically higher epidemic threshold.

Finally, note that the shift observed in the epidemic
threshold is not always as small as seen on Fig. 4�a�. For
example, a topology with G��1��0.365 and �=5 yields
�c

CS=5 /4·�c
ERN. This particular case was verified by MC

simulations.

D. Results on a general topology

As a second test to our formalism, we use �=0.8 and the
following distributions:

gm 

e−4m

m
; pn 


20n

n!
e−20; kl 


e−l

l
, �34�

which result in the second degree distribution shown in Fig.
3 and generated by

ln�1 − e20��z−��e−5/6�
ln�1 − e−5/6�

ln�1 − ze−1�
ln�1 − e−1�

. �35�

In this case, the ERNs are obtained by using cliques of size
one and fitting the degree distribution with the random links
generated by K0�z�. The results obtained on this second to-
pology are presented in Fig. 5. They confirm not only the
quality of our treatment but also earlier conclusions. The
propagation slowdown is stronger in the time evolution fea-
tured in Fig. 5�a� than in the case observed in Fig. 4�b� be-
cause the topology used produces a much higher proportion
of intraclique links for a given individual and, consequently,
a higher fraction of wasted links. It is believed that this effect
could be studied using percolation theory with a quantifica-
tion of CS, such as the modularity concept introduced by
Newman and Girvan in �29�.

V. CONCLUSION

What may well be the single most important contribution
of this paper is the philosophy upon which the formalism is
based. An effective dynamical description of complex net-
works can be obtained by a mean-field approach using a
compartmentalization of both the networks’ elements �e.g.,
individuals or nodes� and of their recurrent topological pat-
terns �e.g., cliques or substructures� in classes of homoge-
neous state and behavior. It has been shown that a particular
topology, the community structure, can be solved with this
method. Furthermore, the approach can also describe random
topology in the limit of the most elementary patterns pos-
sible. Hence, it is reasonable to assert that other complex
topologies may be treated in a similar manner.

More precisely, our analytical results confirm previous
numerical simulations on the effects of community structure
in propagation dynamics: in comparison to equivalent ran-
dom networks, the structured systems feature longer relax-
ation times �i.e., slower propagation� and generally higher
epidemic thresholds.
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FIG. 5. �Color online� Comparison between analytical and numerical results on a network with general community structure defined in
Eq. �34� for a SIS model of propagation dynamics of parameter �=� /r=0.5 under normalized time t→rt. �a� Time evolution of the global
state �community structure in solid shade and equivalent random network in dotted black� and �b� time evolution for cliques of sizes 10, 15,
20, 25, 30, and 35 �lowest to highest curves�. All numerical results are obtained via MC simulations on over 20 000 networks of 25 000
nodes and are presented by their mean value. Analytical predictions for the stable states are shown in horizontal dotted lines in both figures.
Note that the deviation from the predictions is bigger for the smallest cliques than for the larger ones. This is a consequence of the mean-field
description which is more accurate for large systems �or, in this case, subsystems� for which standard deviations are of lesser relative
importance.
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An especially interesting avenue to explore would be to
direct the formalism toward more epidemiologically oriented
applications with a generalization to other propagation model
�see, for example, �41��. Furthermore, in an epidemic con-
text, taking the topology of social network into account al-
lows precise emulation of real intervention scenarios which
are often based on groups of individuals �e.g., school clos-
ings and vaccination of public health workers both corre-
spond to interventions on given cliques�.

Other applications of our formalism are possible in vari-
ous models of dynamics and topologies. Of particular inter-
est is the application of our formalism to dynamical networks
�e.g., �42,43��. This may help in gaining insights into the
emergence and the stability of social structure.
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APPENDIX: COMMUNITY STRUCTURE, WITHOUT
DEGREE CORRELATION, RAISES

THE EPIDEMIC THRESHOLD

This paper has shown that our model can describe propa-
gation phenomena on network with community structure as
well as network with random topology. Using the analytic
solution for the epidemic threshold on Newman’s topology, it
is possible to show that, given two networks with identical
degree distributions and zero degree correlation, but where
one is completely random while the other features commu-
nity structure �and therefore clustering�, the latter will have a
higher epidemic threshold.

First of all, degree correlation refers to situations where,
given a random link in the network, the knowledge of the
excess degree of one of its nodes influences the probability
distribution for the excess degree of the other. For Newman’s
model, it was shown in �19� that the probability ejk that a
given link joins two nodes of excess degree j and k can be
calculated as follows. We first write

ejk =
1

N
�

n

pnn�n − 1�P�j,k�n� , �A1�

where n�n−1� is the number of potential degrees in a clique
of size n, N is a normalization factor corresponding to the
total number of potential links in the network, and P�j ,k �n�
is the probability that a link within a clique of size n joins
two nodes of excess degree j and k. This probability can be
calculated by separating j in jin and jout, the excess links
shared within and outside of the considered clique, respec-
tively, and doing the same for k. We can now write

P�j,k�n� = �
jin

n − 2

jin
�� jin�1 − ��n−2−jinP�jout�

+ �
kin

n − 2

kin
��kin�1 − ��n−2−kinP�kout� , �A2�

where P�jout� and P�kout� are the probabilities that the nodes

have jout and kout links outside the clique of size n. These two
probabilities are simply generated by the PGF composition
G1(P1�1+ �z−1���). Now, because both k and j must be cal-
culated with one clique in common where they both have
n−2 potential excess neighbors, we can write the set of �ejk�
in terms of the following PGF:

�
jk

ejkx
jyk = P2„�1 + �x − 1����1 + �y − 1���…

�G1„P1�1 + �x − 1���…G1„P1�1 + �y − 1���… ,

�A3�

where P2�z���P0��1��−1�nn�n−1�zn−2. For a random net-
work, it is easily obtained that ejk is simply the product of the
two independent probabilities of having nodes of excess de-
gree j and k. Thus, by differentiating the degree distribution
PGF in Eq. �30� to obtain the excess degree distribution, we
find

�
jk

ejk
ERNxjyk = P2�1 + �x − 1���G1„P1�1 + �x − 1���…

� P2�1 + �y − 1���G1„P1�1 + �y − 1���… .

�A4�

For expressions �A3� and �A4� to be equivalent, the follow-
ing condition must be satisfied:

P2„�1 + �x − 1����1 + �y − 1���…

= P2�1 + �x − 1���P2�1 + �y − 1��� . �A5�

We want to compare two networks sharing exactly the same
degree distribution and degree correlation. Equation �A5�
gives us the condition for which two networks with identical
degree distributions, one featuring community structure and
the other random topology, will have the same degree corre-
lation. It is easy to conclude that the distribution of individu-
als per clique, in order to respect Eq. �A5�, can only be given
by

pn = n,�, �A6�

where � is an arbitrary positive integer. In other words, all
structures must be the same size. This limitation comes from
the way we construct our random networks. Because by sim-
ply matching degrees generated from a given distribution,
the knowledge of one neighbor’s degree does not give any
information concerning the other neighbor’s degree. Note
that G0�z� and � are totally free, so that the heterogeneity of
the degree distribution is not entirely compromised.

We will now compare two networks with zero degree cor-
relations. The first is random with pn

ERN=n,2 and �ERN=1
while the other exhibits community structure with pn

CS=n,�
with �	2 and �CS��� �0,1�. The two networks have ex-
actly the same degree distribution, which means that
G0

ERN�z�=G0
CS(PCS�1+ �z−1���). Using Eq. �28�, we can eas-

ily write the epidemic threshold for the random network,
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�c
ERN =

1
d
dzG1

ERN�1�
�

1

���� − 2� + �1�� − 1��
, �A7�

where the last expression uses the PGFs of the structured
network in which �1= d

dzG1
CS�1� is the mean number of ex-

cess cliques per individual. We will now insert expression
�A7� in epidemic threshold condition �26� of the network
with community structure. Because all terms in the polyno-
mial are positive, we expect to find an expression greater
than unity if Eq. �A7� is higher than the threshold for CS,
equal to 1 if the threshold remains the same or lesser than
unity if the threshold for the ERN is actually lower than that
for CS. To prove the latter case, for arbitrary �, �, and �gm�,
we simply demonstrate the following inequality written from
Eq. �26� using Eq. �A7�:

�
i=1

�−1
�1�� − 1�!
�� − i − 1�!

��� − 2� + �1�� − 1��−i � 1. �A8�

Further, it can be shown that the derivative of Eq. �A8� in �1
is always positive. This provides us with an upper bound for
Eq. �A8� in the limit �1→�. Using l’Hôpital’s rule, we thus
find

lim
�1→�

�
i=1

�−1
�1�� − 1�!
�� − i − 1�!

��� − 2� + �1�� − 1��−i = 1. �A9�

This indicates that the two networks with zero degree corre-
lation, one featuring community structure and the other an
equivalent random network, will have the same threshold in
the limit of infinite mean number of excess cliques per indi-
vidual or if �=2. Otherwise, because the derivative of the
polynomial in �1 was shown to be positive, finite �1 and �
	2 imply a higher threshold for the structured network.
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