86 research outputs found

    Farmed salmon rest raw materials as a source of peptones for industrial fermentation media

    Get PDF
    Twelve marine peptones prepared from rest raw materials (RRM) from farmed salmon have been evaluated as nutrient sources in growth media for industrial microorganisms. The peptones were prepared from head and backbones, or from head, backbones and viscera, using different proteases and one or two-step hydrolysis. Growth was determined as optical density using a high-throughput robotic system, allowing for testing of a large number of peptones and microorganisms. For two Lactobacillus-strains tested, the peptones were the only nitrogen source, while for four aerobic bacteria and yeasts, the peptones were assessed as a source of growth factors, with inorganic nitrogen in excess in the media. The peptones containing viscera resulted in higher cell yields than those without, and high growth rates were maintained to higher cell densities. The viscera-containing peptones were better than meat-based peptones, and equally good as yeast extract. The differences between the performance of peptones with and without viscera could be explained by the mineral content and the degree of hydrolysis. Since peptones based on farmed salmon RRM can be provided in large quantities with a stable quality, they should be further explored as a nutrient source for the fermentation industry.publishedVersio

    Chitosan as a wound dressing starting material: antimicrobial Properties and mode of action

    Get PDF
    Fighting bacterial resistance is one of the concerns in modern days, as antibiotics remain the main resource of bacterial control. Data shows that for every antibiotic developed, there is a microorganism that becomes resistant to it. Natural polymers, as the source of antibacterial agents, offer a new way to fight bacterial infection. The advantage over conventional synthetic antibiotics is that natural antimicrobial agents are biocompatible, non-toxic, and inexpensive. Chitosan is one of the natural polymers that represent a very promising source for the development of antimicrobial agents. In addition, chitosan is biodegradable, non-toxic, and most importantly, promotes wound healing, features that makes it suitable as a starting material for wound dressings. This paper reviews the antimicrobial properties of chitosan and describes the mechanisms of action toward microbial cells as well as the interactions with mammalian cells in terms of wound healing process. Finally, the applications of chitosan as a wound-dressing material are discussed along with the current status of chitosan-based wound dressings existing on the market.publishedVersio

    Strain Construction and Process Development for Efficient Recombinant Production of Mannuronan C-5 Epimerases in Hansenula polymorpha

    Get PDF
    Alginates are linear polysaccharides produced by brown algae and some bacteria and are composed of β-D-mannuronic acid (M) and α-L-guluronic acid (G). Alginate has numerous present and potential future applications within industrial, medical and pharmaceutical areas and G rich alginates are traditionally most valuable and frequently used due to their gelling and viscosifying properties. Mannuronan C-5 epimerases are enzymes converting M to G at the polymer level during the biosynthesis of alginate. The Azotobacter vinelandii epimerases AlgE1-AlgE7 share a common structure, containing one or two catalytic A-modules (A), and one to seven regulatory R-modules (R). Despite the structural similarity of the epimerases, they create different M-G patterns in the alginate; AlgE4 (AR) creates strictly alternating MG structures whereas AlgE1 (ARRRAR) and AlgE6 (ARRR) create predominantly G-blocks. These enzymes are therefore promising tools for producing in vitro tailor-made alginates. Efficient in vitro epimerization of alginates requires availability of recombinantly produced alginate epimerases, and for this purpose the methylotrophic yeast Hansenula polymorpha is an attractive host organism. The present study investigates whether H. polymorpha is a suitable expression system for future large-scale production of AlgE1, AlgE4, and AlgE6. H. polymorpha expression strains were constructed using synthetic genes with reduced repetitive sequences as well as optimized codon usage. High cell density cultivations revealed that the largest epimerases AlgE1 (147 kDa) and AlgE6 (90 kDa) are subject to proteolytic degradation by proteases secreted by the yeast cells. However, degradation could be controlled to a large extent either by co-expression of chaperones or by adjusting cultivation conditions. The smaller AlgE4 (58 kDa) was stable under all tested conditions. The results obtained thus point toward a future potential for using H. polymorpha in industrial production of mannuronan C-5 epimerases for in vitro tailoring of alginates.publishedVersio

    Hexaene Derivatives of Nystatin Produced as a Result of an Induced Rearrangement within the nysC Polyketide Synthase Gene in S. noursei ATCC 11455

    Get PDF
    AbstractGenetic manipulation of the polyketide synthase (PKS) gene nysC involved in the biosynthesis of the tetraene antifungal antibiotic nystatin yielded a recombinant strain producing hexaene nystatin derivatives. Analysis of one such compound, S48HX, by LC-MS/MS suggested that it comprises a 36-membered macrolactone ring completely decorated by the post-PKS modification enzymes. Further characterization by bioassay has shown that S48HX exhibits antifungal activity. Genetic analysis of the hexaene-producing mutant revealed an in-frame deletion within the nysC gene via recombination between two homologous ketoreductase domain-encoding sequences. Apparently, this event resulted in the elimination of one complete module from NysC PKS, subsequently leading to the production of the nystatin derivative with a contracted macrolactone ring. These results represent the first example of manipulation of a PKS gene for the biosynthesis of a polyene antibiotic

    Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2)

    Get PDF
    Background: Systems biology approaches to study metabolic switching in Streptomyces coelicolor A3(2) depend on cultivation conditions ensuring high reproducibility and distinct phases of culture growth and secondary metabolite production. In addition, biomass concentrations must be sufficiently high to allow for extensive time-series sampling before occurrence of a given nutrient depletion for transition triggering. The present study describes for the first time the development of a dedicated optimized submerged batch fermentation strategy as the basis for highly time-resolved systems biology studies of metabolic switching in S. coelicolor A3(2). Results: By a step-wise approach, cultivation conditions and two fully defined cultivation media were developed and evaluated using strain M145 of S. coelicolor A3(2), providing a high degree of cultivation reproducibility and enabling reliable studies of the effect of phosphate depletion and L-glutamate depletion on the metabolic transition to antibiotic production phase. Interestingly, both of the two carbon sources provided, D-glucose and L-glutamate, were found to be necessary in order to maintain high growth rates and prevent secondary metabolite production before nutrient depletion. Comparative analysis of batch cultivations with (i) both L-glutamate and D-glucose in excess, (ii) L-glutamate depletion and D-glucose in excess, (iii) L-glutamate as the sole source of carbon and (iv) D-glucose as the sole source of carbon, reveal a complex interplay of the two carbon sources in the bacterium's central carbon metabolism. Conclusions: The present study presents for the first time a dedicated cultivation strategy fulfilling the requirements for systems biology studies of metabolic switching in S. coelicolor A3(2). Key results from labelling and cultivation experiments on either or both of the two carbon sources provided indicate that in the presence of D-glucose, L-glutamate was the preferred carbon source, while D-glucose alone appeared incapable of maintaining culture growth, likely due to a metabolic bottleneck at the oxidation of pyruvate to acetyl-CoA

    Biosynthesis of Macrolactam BE-14106 Involves Two Distinct PKS Systems and Amino Acid Processing Enzymes for Generation of the Aminoacyl Starter Unit

    Get PDF
    SummaryBE-14106 is a macrocyclic lactam with an acyl side chain previously identified in a marine-derived Streptomyces sp. The gene cluster for BE-14106 biosynthesis was cloned from a Streptomyces strain newly isolated from marine sediments collected in the Trondheimsfjord (Norway). Bioinformatics and experimental analyses of the genes in the cluster suggested an unusual mechanism for assembly of the molecule. Biosynthesis of the aminoacyl starter apparently involves the concerted action of a distinct polyketide synthase (PKS) system and several enzymes that activate and process an amino acid. The resulting starter unit is loaded onto a second PKS complex, which completes the synthesis of the macrolactam ring. Gene inactivation experiments, enzyme assays with heterologously expressed proteins, and feeding studies supported the proposed model for the biosynthesis and provided new insights into the assembly of macrolactams with acyl side chain

    The dynamic architecture of the metabolic switch in Streptomyces coelicolor

    Get PDF
    [EN] Background: During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples.Results: Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis.Conclusions: Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological settingSIWe are very grateful to Mervyn Bibb for his generous support with the Affymetrix custom microarray design. We acknowledge the excellent technical help of K. Klein, S. Poths, M. Walter, A. Øverby and E. Hansen. This project was supported by grants of the ERA-NET SySMO Project [GEN2006-27745-E/SYS]: (P-UK-01-11-3i) and the Research Council of Norway [project no. 181840/I30

    Fluxome study of Pseudomonas fluorescens reveals major reorganisation of carbon flux through centralmetabolic pathways in response to inactivation of the anti-sigma factor MucA.

    Get PDF
    BackgroundThe bacterium Pseudomonas fluorescens switches to an alginate-producing phenotype when the pleiotropic anti-sigma factor MucA is inactivated. The inactivation is accompanied by an increased biomass yield on carbon sources when grown under nitrogen-limited chemostat conditions. A previous metabolome study showed significant changes in the intracellular metabolite concentrations, especially of the nucleotides, in mucA deletion mutants compared to the wild-type. In this study, the P. fluorescens SBW25 wild-type and an alginate non-producing mucA- ΔalgC double-knockout mutant are investigated through model-based 13C-metabolic flux analysis (13C-MFA) to explore the physiological consequences of MucA inactivation at the metabolic flux level. Intracellular metabolite extracts from three carbon labelling experiments using fructose as the sole carbon source are analysed for 13C-label incorporation in primary metabolites by gas and liquid chromatography tandem mass spectrometry.ResultsFrom mass isotopomer distribution datasets, absolute intracellular metabolic reaction rates for the wild type and the mutant are determined, revealing extensive reorganisation of carbon flux through central metabolic pathways in response to MucA inactivation. The carbon flux through the Entner-Doudoroff pathway was reduced in the mucA- ΔalgC mutant, while flux through the pentose phosphate pathway was increased. Our findings also indicated flexibility of the anaplerotic reactions through down-regulation of the pyruvate shunt in the mucA- ΔalgC mutant and up-regulation of the glyoxylate shunt.ConclusionsAbsolute metabolic fluxes and metabolite levels give detailed, integrated insight into the physiology of this industrially, medically and agriculturally important bacterial species and suggest that the most efficient way of using a mucA- mutant as a cell factory for alginate production would be to use non-growing conditions and nitrogen deprivation

    Characterization of the P450 Monooxygenase NysL, Responsible for C-10 Hydroxylation during Biosynthesis of the Polyene Macrolide Antibiotic Nystatin in Streptomyces noursei

    No full text
    The nysL gene, encoding a putative P450 monooxygenase, was identified in the nystatin biosynthetic gene cluster of Streptomyces noursei. Although it has been proposed that NysL is responsible for hydroxylation of the nystatin precursor, experimental evidence for this activity was lacking. The nysL gene was inactivated in S. noursei by gene replacement, and the resulting mutant was shown to produce 10-deoxynystatin. Purification and an in vitro activity assay for 10-deoxynystatin demonstrated its antifungal activity being equal to that of nystatin. The NysL protein was expressed heterologously in Escherichia coli as a His-tagged protein and used in an enzyme assay with 10-deoxynystatin as a substrate. The results obtained clearly demonstrated that NysL is a hydroxylase responsible for the post-polyketide synthase modification of 10-deoxynystatin at position C-10. Kinetic studies with the purified recombinant enzyme allowed determination of K(m) and k(cat) and revealed no inhibition of recombinant NysL by either the substrate or the product. These studies open the possibility for in vitro evolution of NysL aimed at changing its specificity, thereby providing new opportunities for engineered biosynthesis of novel nystatin analogues hydroxylated at alternative positions of the macrolactone ring
    corecore