12 research outputs found

    European Spallation Source Lattice Design Status

    Get PDF
    The accelerator of the European Spallation Source (ESS) will deliver 62.5 mA proton beam of 2.0 GeV onto the target, offering an unprecedented beam power of 5 MW. Since the technical design report (TDR) was published in 2013, work has continued to further optimise the accelerator design. We report on the advancements in lattice design optimisations after the TDR to improve performance and flexibility, and reduce cost of the ESS accelerato

    Induced activation in accelerator components

    Get PDF
    The residual activity induced in particle accelerators is a serious issue from the point of view of radiation safety as the long-lived radionuclides produced by fast or moderated neutrons and impact protons cause problems of radiation exposure for staff involved in the maintenance work and when decommissioning the facility. This paper presents activation studies of the magnets and collimators in the High Energy Beam Transport line of the European Spallation Source due to the backscattered neutrons from the target and also due to the direct proton interactions and their secondaries. An estimate of the radionuclide inventory and induced activation are predicted using the GEANT4 code

    ESS Linac Beam Physics Design Update

    No full text
    The European Spallation Source, ESS, uses a linear accelerator to bombard the tungsten target with the high intensity protons beam for producing intense beams of neutrons. The nominal average beam power of the linac is 5~MW with a peak beam power at target of 125~MW. This paper focuses on the beam dynamics design of the ESS linac and the diagnostics elements used for the tuning of the lattice and matching between sections

    A Planning and Scheduling System for the ESS Accelerator Project

    No full text
    Constructing a large, international research infrastructure is a complex task, especially when a large fraction of the equipment is delivered as in-kind contributions. A mature project management approach is essential to lead the planning and construction to deliver scientifically and technically. The purpose of this paper is to present how the ESS accelerator project is managed in terms of planning and scheduling from the design phase until commissioning, keeping time, budgets and resources constraints, as well as creating and maintaining a strong and trust-based partnership with the external contributors

    The European Spallation Source

    No full text
    In 2003 the joint European effort to design a European Spallation Source (ESS) resulted in a set of reports, and in May 2009 Lund was agreed to be the ESS site. The ESS Scandinavia office has since then worked on setting all the necessary legal and organizational matters in place so that the Design Update and construction can be started in January 2011, in collaboration with European partners. The Design Update phase is expected to end in 2012, to be followed by a construction phase, with first neutrons expected in 2018-2019. (C) 2011 Elsevier By. All rights reserved

    First Experiments with CRYRING@ESR

    Get PDF
    The low-energy heavy ion storage ring CRYRING was transported from Stockholm to Darmstadt, modernized and reconfigured, and recommissioned as CRYRING@ESR. The machine is now in operation with all installations in service and is available as a user facility for experiments proposed through the SPARC collaboration. During the 2020–2022 period, we brought a number of experimental installations into service and used them to measure first data: the ultra-cold electron cooler for merged-beam electron–ion collisions, the gas jet target for atomic collisions, a next-generation microcalorimeter-based X-ray spectroscopy setup, and others. Ions can be injected either in low charge states from a local ion source through a 300 keV/u RFQ linac, or in high charge states from the GSI accelerator chain through ESR. This allows for very broad access to ions across the entire periodic table. CRYRING@ESR is able to de- or accelerate ions and cool and store beams of isotopically pure species in a desired charge state. While the analysis is still largely ongoing, the first experimental data already show that the machine reached its expected performance level, and our high expectations regarding achievable resolution in spectroscopy experiments have been fulfilled. With access to new classes of ions available through ESR injection and a new generation of experimental instrumentation, CRYRING@ESR is a unique facility for experiments with heavy, highly charged ions. Here, we will review our present setup and machine performance, discuss the data from our first commissioning experiments and briefly preview the upcoming new installations for the coming years

    ESS Normal Conducting Linac Status and Plans

    No full text
    International audienceThe European Spallation Source (ESS) uses a linear accelerator to deliver the high intensity proton beam to the target station for producing intense beams of neutrons. The average beam power is 5 MW with a peak beam power at the target of 125 MW. The normal conducting linear accelerator (linac) operating at 352.21 MHz accelerates a proton beam of 62.5 mA from 0.075 to 90 MeV. It consists of an ion source, Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ), Medium Energy Beam Transport (MEBT), and Drift Tube Linac (DTL). The design, construction and testing of those structures is done by European partner labs as an in-kind contribution to the ESS project. This paper presents the status and plans for the ESS normal conducting linac
    corecore