54 research outputs found

    Structural studies of hydrated samples of amorphous calcium phosphate and phosphoprotein nanoclusters

    Get PDF
    There are abundant examples of nanoclusters and inorganic microcrystals in biology. Their study under physiologically relevant conditions remains challenging due to their heterogeneity, instability, and the requirements of sample preparation. Advantages of using neutron diffraction and contrast matching to characterize biomaterials are highlighted in this article. We have applied these and complementary techniques to search for nanocrystals within clusters of calcium phosphate sequestered by bovine phosphopeptides, derived from osteopontin or casein. The neutron diffraction patterns show broad features that could be consistent with hexagonal hydroxyapatite crystallites smaller than 18.9 Å. Such nanocrystallites are, however, undetected by the complementary X-ray and FTIR data, collected on the same samples. The absence of a distinct diffraction pattern from the nanoclusters supports the generally accepted amorphous calcium phosphate structure of the mineral core

    Multi-Phonon γ\gamma-Vibrational Bands and the Triaxial Projected Shell Model

    Full text link
    We present a fully quantum-mechanical, microscopic, unified treatment of ground-state band and multi-phonon γ\gamma-vibrational bands using shell model diagonalization with the triaxial projected shell model. The results agree very well with data on the g- and γ\gamma-band spectra in 156−170^{156-170}Er, as well as with recently measured 4+4^+ 2-phonon γ\gamma-bandhead energies in 166^{166}Er and 168^{168}Er. Multi-phonon γ\gamma-excitation energies are predicted.Comment: 4 pages, 4 figures, submitted to Phys. Lett.

    Structure and diffusive dynamics of aspartate α-decarboxylase (ADC) liganded with D-serine in aqueous solution.

    Get PDF
    Incoherent neutron spectroscopy, in combination with dynamic light scattering, was used to investigate the effect of ligand binding on the center-of-mass self-diffusion and internal diffusive dynamics of Escherichia coli aspartate α-decarboxylase (ADC). The X-ray crystal structure of ADC in complex with the D-serine inhibitor was also determined, and molecular dynamics simulations were used to further probe the structural rearrangements that occur as a result of ligand binding. These experiments reveal that D-serine forms hydrogen bonds with some of the active site residues, that higher order oligomers of the ADC tetramer exist on ns-ms time-scales, and also show that ligand binding both affects the ADC internal diffusive dynamics and appears to further increase the size of the higher order oligomers

    Protein Short-Time Diffusion in a Naturally Crowded Environment.

    Get PDF
    The interior of living cells is a dense and polydisperse suspension of macromolecules. Such a complex system challenges an understanding in terms of colloidal suspensions. As a fundamental test we employ neutron spectroscopy to measure the diffusion of tracer proteins (immunoglobulins) in a cell-like environment (cell lysate) with explicit control over crowding conditions. In combination with Stokesian dynamics simulation, we address protein diffusion on nanosecond time scales where hydrodynamic interactions dominate over negligible protein collisions. We successfully link the experimental results on these complex, flexible molecules with coarse-grained simulations providing a consistent understanding by colloid theories. Both experiments and simulations show that tracers in polydisperse solutions close to the effective particle radius Reff = ⟨ Ri3⟩1/3 diffuse approximately as if the suspension was monodisperse. The simulations further show that macromolecules of sizes R > Reff ( R < Reff) are slowed more (less) effectively even at nanosecond time scales, which is highly relevant for a quantitative understanding of cellular processes

    Ergebnisse der inguino-skrotalen Therapie des Leistenhodens

    No full text
    • …
    corecore