23 research outputs found

    Die Expression des Maus Mamma Tumor Virus: Identifizierung eines zelltypspezifischen Repressors

    Get PDF

    Retrospektive Untersuchung der Aussagekraft sonographisch ermittelter Nervenwurzeldurchmesser im Rahmen der Polyneuropathie-Diagnostik vor dem Hintergrund einer neuroforaminalen Enge

    Get PDF
    Nervenwurzeln verlassen den Spinalkanal paarig über die Foramina intervertebralia (Neuroforamina). Durch meist degenerative Veränderung der Wirbelsäule kann es zu Einengungen der Foramina kommen, welche sich mittels bildgebender Verfahren wie der CT- oder der MRT-Untersuchung darstellen lassen. Die Nervenwurzeln selbst sind mit Hilfe der Sonographie gut darstellbar und in ihrer Größe erfassbar. Im Rahmen der Polyneuropathie-Diagnostik hat die Ultraschalluntersuchung der Nerven einen wichtigen Stellenwert eingenommen. Der Begriff der Polyneuropathie bezeichnet eine heterogene Gruppe verschiedener Erkrankungen, die mit einer generalisierten Schädigung der peripheren Nerven einhergeht. Insbesondere demyelinisierende Polyneuropathien gehen gehäuft mit einer Verdickung von Nerven einher, die mit Hilfe der Sonographie detektiert werden kann. Der Untersuchung der zervikalen Nervenwurzeln kommt besondere Bedeutung zu, da Schwellungen in diesen proximalen Nervenabschnitten Hinweise speziell auf entzündliche Polyneuropathien wie das Guillain-Barré-Syndrom oder die CIDP liefern können. In dieser Arbeit wurde der Fragestellung nachgegangen, ob eine mittels MRT oder CT festgestellte Einengung des Neuroforamens mit einer im Ultraschall erfassbaren Verdickung der Nervenwurzel einhergeht und dies somit das Kriterium der Nervenwurzelverdickung im Rahmen der PNP-Diagnostik beeinträchtigen kann. Weiterhin sollten verschiedene Polyneuropathien hinsichtlich ihrer Nervenwurzeldurchmesser verglichen und auf einen möglichen Einfluss einer begleitenden neuroforaminalen Einengung untersucht werden

    JProGO: a novel tool for the functional interpretation of prokaryotic microarray data using Gene Ontology information

    Get PDF
    A novel program suite was implemented for the functional interpretation of high-throughput gene expression data based on the identification of Gene Ontology (GO) nodes. The focus of the analysis lies on the interpretation of microarray data from prokaryotes. The three well established statistical methods of the threshold value-based Fisher's exact test, as well as the threshold value-independent Kolmogorov–Smirnov and Student's t-test were employed in order to identify the groups of genes with a significantly altered expression profile. Furthermore, we provide the application of the rank-based unpaired Wilcoxon's test for a GO-based microarray data interpretation. Further features of the program include recognition of the alternative gene names and the correction for multiple testing. Obtained results are visualized interactively both as a table and as a GO subgraph including all significant nodes. Currently, JProGO enables the analysis of microarray data from more than 20 different prokaryotic species, including all important model organisms, and thus constitutes a useful web service for the microbial research community. JProGO is freely accessible via the web at the following address

    SOAT1: A Suitable Target for Therapy in High-Grade Astrocytic Glioma?

    Get PDF
    Targeting molecular alterations as an effective treatment for isocitrate dehydrogenasewildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages

    SOAT1: a suitable target for therapy in high-grade astrocytic glioma?

    Get PDF
    Targeting molecular alterations as an effective treatment for isocitrate dehydrogenase-wildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages

    The Pseudomonas aeruginosa Universal Stress Protein PA4352 Is Essential for Surviving Anaerobic Energy Stress

    No full text
    During infection of the cystic fibrosis (CF) lung, Pseudomonas aeruginosa microcolonies are embedded in the anaerobic CF mucus. This anaerobic environment seems to contribute to the formation of more robust P. aeruginosa biofilms and to an increased antibiotic tolerance and therefore promotes persistent infection. This study characterizes the P. aeruginosa protein PA4352, which is important for survival under anaerobic energy stress conditions. PA4352 belongs to the universal stress protein (Usp) superfamily and harbors two Usp domains in tandem. In Escherichia coli, Usp-type stress proteins are involved in survival during aerobic growth arrest and under various other stresses. A P. aeruginosa PA4352 knockout mutant was tested for survival under several stress conditions. We found a decrease in viability of this mutant compared to the P. aeruginosa wild type during anaerobic energy starvation caused by the missing electron acceptors oxygen and nitrate. Consistent with this phenotype under anaerobic conditions, the PA4352 knockout mutant was also highly sensitive to carbonyl cyanide m-chlorophenylhydrazone, the chemical uncoupler of the electron transport chain. Primer extension experiments identified two promoters upstream of the PA4352 gene. One promoter is activated in response to oxygen limitation by the oxygen-sensing regulatory protein Anr. The center of a putative Anr binding site was identified 41.5 bp upstream of the transcriptional start site. The second promoter is active only in the stationary phase, however, independently of RpoS, RelA, or quorum sensing. This is the second P. aeruginosa Usp-type stress protein that we have identified as important for survival under anaerobic conditions, which resembles the environment during persistent infection

    The Fnr Regulon of Bacillus subtilis

    No full text
    The Bacillus subtilis transcriptional regulator Fnr is an integral part of the regulatory cascade required for the adaptation of the bacterium to low oxygen tension. The B. subtilis Fnr regulon was defined via transcriptomic analysis in combination with bioinformatic-based binding site prediction. Four distinct groups of Fnr-dependent genes were observed. Group 1 genes (narKfnr, narGHJI, and arfM) are generally induced by Fnr under anaerobic conditions. All corresponding promoters contain an essential Fnr-binding site centered −41.5/−40.5 bp upstream of the transcriptional start point, suggesting their induction by direct Fnr interaction. Group 2 genes (alsSD, ldh lctP, ywcJ, and cydABCD) are characterized by anaerobic repression in the presence of nitrate. Mutational analysis of the Fnr-binding sites found in three of the corresponding promoters excluded their function in Fnr-mediated repression. Genetic evidence showing that group 2 genes are anaerobically repressed by nitrate reductase formation was accumulated. A possible role of the redox regulator YdiH in the regulation of group 2 genes was initially investigated. Group 3 genes are characterized by their Fnr-dependent activation in the presence of nitrate and the lack of an Fnr-binding site in their promoters. The analysis of Group 3 gene transcription (ykuNOP and ydbN) indicated that Fnr induces nitrate reductase production, which leads to the formation of the regulatory compound nitrite from nitrate. Finally, the group 4 operon acoABCL, lacking an Fnr-binding site, requires Fnr-dependent nitrate reductase formation for its general anaerobic induction. A regulatory model for the observed complex Fnr-mediated gene expression was deduced
    corecore