14 research outputs found

    Hierarchically guided in situ nanolaminography for the visualisation of damage nucleation in alloy sheets

    Get PDF
    Hierarchical guidance is developed for three-dimensional (3D) nanoscale X-ray imaging, enabling identification, refinement, and tracking of regions of interest (ROIs) within specimens considerably exceeding the field of view. This opens up new possibilities for in situ investigations. Experimentally, the approach takes advantage of rapid multiscale measurements based on magnified projection microscopy featuring continuous zoom capabilities. Immediate and continuous feedback on the subsequent experimental progress is enabled by suitable on-the-fly data processing. For this, by theoretical justification and experimental validation, so-called quasi-particle phase-retrieval is generalised to conical-beam conditions, being key for sufficiently fast computation without significant loss of imaging quality and resolution compared to common approaches for holographic microscopy. Exploiting 3D laminography, particularly suited for imaging of ROIs in laterally extended plate-like samples, the potential of hierarchical guidance is demonstrated by the in situ investigation of damage nucleation inside alloy sheets under engineering-relevant boundary conditions, providing novel insight into the nanoscale morphological development of void and particle clusters under mechanical load. Combined with digital volume correlation, we study deformation kinematics with unprecedented spatial resolution. Correlation of mesoscale (i.e. strain fields) and nanoscale (i.e. particle cracking) evolution opens new routes for the understanding of damage nucleation within sheet materials with application-relevant dimensions

    3D in situ study of damage during a ‘shear to tension’ load path change in an aluminium alloy

    Get PDF
    International audienceA load path change (LPC) from shear to tension has been studied for a recrystallized 2198 T8 aluminium alloy sheet material by three-dimensional (3D) X-ray imaging combined with image correlation and interpreted by complementary 3D finite element (FE) simulations. A cross-shaped specimen was designed for the non-proportional loading and multiscale study. The effect of the LPC on the formability and related strain localisation, damage and failure was investigated and damage mechanisms could be clearly identified. The macroscopic tension stretch to fracture, measured by an optical extensometer during the shear to tension test, was reduced by about 20% compared to the proportional tension test. Damage, measured by in situ laminography imaging at μm-scale resolution, has interestingly already been found under shear, and was quantified as surface void fraction during the LPC. Strain was measured inside the material and at the mesoscale by 2D digital image correlation (DIC) on projected volume data, using the (natural) intermetallic particle contrast present in the 3D laminographic data. An accumulated equivalent strain definition, suited for the description of non-proportional loading, has been applied to the DIC data and FE simulations, indicating good agreement between both. On the microscopic scale, damage was seen to nucleate under shear load in the form of flat cracks, of similar width as the grain size, and in the form of cracks inside intermetallic particles. This damage subsequently grew and coalesced during tensile loading which in turn led to final fracture

    Hierarchically guided in situ nanolaminography for the visualisation of damage nucleation in alloy sheets

    Get PDF
    Hierarchical guidance is developed for three-dimensional (3D) nanoscale X-ray imaging, enabling identification, refinement, and tracking of regions of interest (ROIs) within specimens considerably exceeding the field of view. This opens up new possibilities for in situ investigations. Experimentally, the approach takes advantage of rapid multiscale measurements based on magnified projection microscopy featuring continuous zoom capabilities. Immediate and continuous feedback on the subsequent experimental progress is enabled by suitable on-the-fly data processing. For this, by theoretical justification and experimental validation, so-called quasi-particle phase-retrieval is generalised to conical-beam conditions, being key for sufficiently fast computation without significant loss of imaging quality and resolution compared to common approaches for holographic microscopy. Exploiting 3D laminography, particularly suited for imaging of ROIs in laterally extended plate-like samples, the potential of hierarchical guidance is demonstrated by the in situ investigation of damage nucleation inside alloy sheets under engineering-relevant boundary conditions, providing novel insight into the nanoscale morphological development of void and particle clusters under mechanical load. Combined with digital volume correlation, we study deformation kinematics with unprecedented spatial resolution. Correlation of mesoscale (i.e. strain fields) and nanoscale (i.e. particle cracking) evolution opens new routes for the understanding of damage nucleation within sheet materials with application-relevant dimensions.Peer reviewe

    Dislocation Climb in AlN Crystals Grown at Low-Temperature Gradients Revealed by 3D X-ray Diffraction Imaging

    No full text
    The dislocation evolution in a cross-section a-plane cut through a sublimation-grown aluminum nitride (AlN) crystal grown with low-temperature gradients and subsequent low thermal stress is investigated with different X-ray diffraction imaging methods. Exploiting the so-called weak-beam contrast using monochromatic X-rays in combination with suitable three-dimensional (3D) interpretation and reconstruction allows the identification of individual dislocations as well as tracing their progression in the crystal volume, even in the considerably strained interface region. It is particularly striking that the laterally grown crystal volume is dislocation-free. The dislocation densities in the seed and the bulk volume are similar (1 × 103^3 cm2^{–2}), but while the dislocations in the seed are randomly arranged, the dislocations in the bulk volume show a uniform line shape, indicating a common mechanism of dislocation movement. Since the dislocation slings in the bulk do not lie in slip planes, it can be concluded that the lateral movement does not result from dislocation glide, but from impurity-driven climb of dislocations during growth. The absence of slip can be explained by the low-temperature gradients and the subsequent low thermal stress below the critical resolved shear stress (CRSS)
    corecore