75 research outputs found

    Automated haematology analysis to diagnose malaria

    Get PDF
    © 2010 licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.For more than a decade, flow cytometry-based automated haematology analysers have been studied for malaria diagnosis. Although current haematology analysers are not specifically designed to detect malaria-related abnormalities, most studies have found sensitivities that comply with WHO malaria-diagnostic guidelines, i.e. ≥ 95% in samples with > 100 parasites/μl. Establishing a correct and early malaria diagnosis is a prerequisite for an adequate treatment and to minimizing adverse outcomes. Expert light microscopy remains the 'gold standard' for malaria diagnosis in most clinical settings. However, it requires an explicit request from clinicians and has variable accuracy. Malaria diagnosis with flow cytometry-based haematology analysers could become an important adjuvant diagnostic tool in the routine laboratory work-up of febrile patients in or returning from malaria-endemic regions. Haematology analysers so far studied for malaria diagnosis are the Cell-Dyn®, Coulter® GEN•S and LH 750, and the Sysmex XE-2100® analysers. For Cell-Dyn analysers, abnormal depolarization events mainly in the lobularity/granularity and other scatter-plots, and various reticulocyte abnormalities have shown overall sensitivities and specificities of 49% to 97% and 61% to 100%, respectively. For the Coulter analysers, a 'malaria factor' using the monocyte and lymphocyte size standard deviations obtained by impedance detection has shown overall sensitivities and specificities of 82% to 98% and 72% to 94%, respectively. For the XE-2100, abnormal patterns in the DIFF, WBC/BASO, and RET-EXT scatter-plots, and pseudoeosinophilia and other abnormal haematological variables have been described, and multivariate diagnostic models have been designed with overall sensitivities and specificities of 86% to 97% and 81% to 98%, respectively. The accuracy for malaria diagnosis may vary according to species, parasite load, immunity and clinical context where the method is applied. Future developments in new haematology analysers such as considerably simplified, robust and inexpensive devices for malaria detection fitted with an automatically generated alert could improve the detection capacity of these instruments and potentially expand their clinical utility in malaria diagnosis

    In Vivo Hemozoin Kinetics after Clearance of Plasmodium berghei Infection in Mice

    Get PDF
    Hemozoin (Hz) is released into the blood stream after rupture of infected red blood cells (iRBCs) at the end of each parasite replication cycle. This free Hz is ingested by circulating and resident phagocytes. The presence of Hz in tissues after clearance of infection has been previously reported. Still, little is known about the kinetics of Hz in vivo, during and after Plasmodium infection. It is particularly important to understand Hz kinetics after malaria infections as it has been reported that Hz is associated with impairment of immune functions, including possible consequences for coinfections. Indeed, if Hz remains biologically active for prolonged periods of time inside immunocompetent cells, the potential consequences of such accumulation and presence to the immune system should be clarified. Here, using several independent methods to assess the presence of Hz, we report the long-term in vivo kinetics of Hz in diverse organs in a murine model of malaria infection

    Is flow cytometry better in counting malaria pigment-containing leukocytes compared to microscopy?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detection of malaria pigment (or haemozoin; Hz)-containing leukocytes may have prognostic relevance in malaria; however, studies reported conflicting results, with microscopic counts suggestive of being inaccurate and imprecise.</p> <p>Methods</p> <p>Numbers of Hz-containing leukocytes from a malaria patient obtained with a flow cytometer counting 50.000 gated events were compared with thin film microscopy as applied under field conditions.</p> <p>Results</p> <p>Flow cytometry identified 5.8% Hz-containing monocytes and 1.8% Hz-containing neutrophils. The microscopic examination yielded 10% and 13% of Hz-containing monocytes, as well as 0% and 0.5% of Hz-containing neutrophils for observers one and two, respectively.</p> <p>Conclusion</p> <p>Novel, robust and affordable cytometric methods should be evaluated in the field as they may assist in utilizing Hz-containing cells as clinically useful parameter.</p

    Methaemoglobin and COHb in patients with malaria

    Get PDF
    Background Haemolytic conditions may contribute to disease pathogenesis and severe clinical manifestations through the liberation of free haemoglobin (Hb) and production of toxic free haem. Thus, free Hb and haem should be associated with altered MetHb and COHb levels in malaria as in other conditions. Methods This study comprises data collected at three different sites: (i) a retrospective analysis of the first arterial blood gas result (ABGS) of any patient during 2010 at the University Hospital in Lisbon; (ii) a retrospective analysis of ABGS from patients with severe malaria admitted to the intensive care unit in Berlin, Germany; and (iii) a prospective study of non-invasive MetHb measurements in children with and without malaria in Lambaréné, Gabon. Results In Lisbon, the mean MetHb level was 1.4% (SD: 0.5) in a total of 17,834 ABGS. Only 11 of 98 samples with a MetHb level of >3.0 referred to infections. COHb levels showed no particular association with clinical conditions, including sepsis. In 13 patients with severe malaria in Berlin, the mean MetHb levels on admission was 1.29%, with 1.36% for cerebral malaria and 1.14% for non-cerebral malaria (P > 0.05). All COHb measurements were below 2.3%. In Lambaréné, Gabon, 132 healthy children had a mean MetHb level of 1.57%, as compared to 150 children with malaria, with a value of 1.77% and 2.05% in uncomplicated and complicated cases, respectively (P < 0.01). Conclusions The data appears consistent with the methaemoglobin/haem hypothesis in malaria and sepsis pathogenesis. However, although MetHb was significantly different between healthy controls and children with malaria in Africa, the difference was rather small, also when compared to previous studies. Still, non-invasive bedside MetHb testing may warrant further evaluation as it could be a simple adjuvant tool for prognosis in resource poor settings

    Full blood count and haemozoin-containing leukocytes in children with malaria: diagnostic value and association with disease severity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diligent and correct laboratory diagnosis and up-front identification of risk factors for progression to severe disease are the basis for optimal management of malaria.</p> <p>Methods</p> <p>Febrile children presenting to the Medical Research Unit at the Albert Schweitzer Hospital (HAS) in Lambaréné, Gabon, were assessed for malaria. Giemsa-stained thick films for qualitative and quantitative diagnosis and enumeration of malaria pigment, or haemozoin (Hz)-containing leukocytes (PCL) were performed, and full blood counts (FBC) were generated with a Cell Dyn 3000<sup>® </sup>instrument.</p> <p>Results</p> <p>Compared to standard light microscopy of Giemsa-stained thick films, diagnosis by platelet count only, by malaria pigment-containing monocytes (PCM) only, or by pigment-containing granulocytes (PCN) only yielded sensitivities/specificities of 92%/93%; 96%/96%; and 85%/96%, respectively. The platelet count was significantly lower in children with malaria compared to those without (p < 0.001), and values showed little overlap between groups. Compared to microscopy, scatter flow cytometry as applied in the Cell-Dyn 3000<sup>® </sup>instrument detected significantly more patients with PCL (p < 0.01). Both PCM and PCN numbers were higher in severe versus non-severe malaria yet reached statistical significance only for PCN (p < 0.0001; PCM: p = 0.14). Of note was the presence of another, so far ill-defined pigment-containing group of phagocytic cells, identified by laser-flow cytometry as lymphocyte-like gated events, and predominantly found in children with malaria-associated anaemia.</p> <p>Conclusion</p> <p>In the age group examined in the Lambaréné area, platelets are an excellent adjuvant tool to diagnose malaria. Pigment-containing leukocytes (PCL) are more readily detected by automated scatter flow cytometry than by microscopy. Automated Hz detection by an instrument as used here is a reliable diagnostic tool and correlates with disease severity. However, clinical usefulness as a prognostic tool is limited due to an overlap of PCL numbers recorded in severe versus non-severe malaria. However, this is possibly because of the instrument detection algorithm was not geared towards this task, and data lost during processing; and thus adjusting the instrument's algorithm may allow to establish a meaningful cut-off value.</p

    Simple flow cytometric detection of haemozoin containing leukocytes and erythrocytes for research on diagnosis, immunology and drug sensitivity testing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria pigment (haemozoin, Hz) has been the focus of diverse research efforts. However, identification of Hz-containing leukocytes or parasitized erythrocytes is usually based on microscopy, with inherent limitations. Flow cytometric detection of depolarized Side-Scatter is more accurate and its adaptation to common bench top flow cytometers might allow several applications. These can range from the <it>ex-vivo </it>and <it>in-vitro </it>detection and functional analysis of Hz-containing leukocytes to the detection of parasitized Red-Blood-Cells (pRBCs) to assess antimalarial activity.</p> <p>Methods</p> <p>A standard benchtop flow cytometer was adapted to detect depolarized Side-Scatter. Synthetic and <it>Plasmodium falciparum </it>Hz were incubated with whole blood and PBMCs to detect Hz-containing leukocytes and CD16 expression on monocytes. C5BL/6 mice were infected with <it>Plasmodium berghei </it>ANKA or <it>P. berghei </it>NK65 and Hz-containing leukocytes were analysed using CD11b and Gr1 expression. Parasitized RBC from infected mice were identified using anti-Ter119 and SYBR green I and were analysed for depolarized Side Scatter. A highly depolarizing RBC population was monitored in an <it>in-vitro </it>culture incubated with chloroquine or quinine.</p> <p>Results</p> <p>A flow cytometer can be easily adapted to detect depolarized Side-Scatter and thus, intracellular Hz. The detection and counting of Hz containing leukocytes in fresh human or mouse blood, as well as in leukocytes from <it>in-vitro </it>experiments was rapid and easy. Analysis of CD14/CD16 and CD11b/Gr1 monocyte expression in human or mouse blood, in a mixed populations of Hz-containing and non-containing monocytes, appears to show distinct patterns in both types of cells. Hz-containing pRBC and different maturation stages could be detected in blood from infected mice. The analysis of a highly depolarizing population that contained mature pRBC allowed to assess the effect of chloroquine and quinine after only 2 and 4 hours, respectively.</p> <p>Conclusions</p> <p>A simple modification of a flow cytometer allows for rapid and reliable detection and quantification of Hz-containing leukocytes and the analysis of differential surface marker expression in the same sample of Hz-containing <it>versus </it>non-Hz-containing leukocytes. Importantly, it distinguishes different maturation stages of parasitized RBC and may be the basis of a rapid no-added-reagent drug sensitivity assay.</p

    Impact of Anti-Retroviral Treatment and Cotrimoxazole Prophylaxis on Helminth Infections in HIV-Infected Patients in Lambar�n�, Gabon

    Get PDF
    Background: Foci of the HIV epidemic and helminthic infections largely overlap geographically. Treatment options for helminth infections are limited, and there is a paucity of drug-development research in this area. Limited evidence suggests that antiretroviral therapy (ART) reduces prevalence of helminth infections in HIV-infected individuals. We investigated whether ART exposure and cotrimoxazole preventive therapy (CTX-P) is associated with a reduced prevalence of helminth infections. Methodology and Principal Findings: This cross-sectional study was conducted at a primary HIV-clinic in Lambaréné, Gabon. HIV-infected adults who were ART-naïve or exposed to ART for at least 3 months submitted one blood sample and stool and urine samples on 3 consecutive days. Outcome was helminth infection with intestinal helminths, Schistosoma haematobium, Loa loa or Mansonella perstans. Multivariable logistic regression was used to assess associations between ART or CTX-P and helminth infection. In total, 408 patients were enrolled. Helminth infection was common (77/252 [30.5%]). Filarial infections were most prevalent (55/310 [17.7%]), followed by infection with intestinal helminths (35/296 [11.8%]) and S. haematobium (19/323 [5.9%]). Patients on CTX-P had a reduced risk of Loa loa microfilaremia (adjusted odds ratio (aOR) 0.47, 95% CI 0.23-0.97, P = 0.04), also in the subgroup of patients on ART (aOR 0.36, 95% CI 0.13-0.96, P = 0.04). There was no effect of ART exposure on helminth infection prevalence. Conclusions/Significance: CTX-P use was associated with a decreased risk of Loa loa infection, suggesting an anthelminthic effect of antifolate drugs. No relation between ART use and helminth infections was established

    A comparison of different scores for diagnosis and mortality prediction of adults with sepsis in Low-and-Middle -I ncome Countries: a systematic review and meta-analysis

    Get PDF
    Background Clinical scores for sepsis have been primarily developed for, and applied in High-Income Countries. This systematic review and meta-analysis examined the performance of the quick Sequential Organ Failure Assessment (qSOFA), Systemic Inflammatory Response Syndrome (SIRS), Modified Early Warning Score (MEWS), and Universal Vital Assessment (UVA) scores for diagnosis and prediction of mortality in patients with suspected infection in Low-and-Middle-Income Countries. Methods PubMed, Science Direct, Web of Science, and the Cochrane Central Register of Controlled Trials databases were searched until May 18, 2021. Studies reporting the performance of at least one of the above-mentioned scores for predicting mortality in patients of 15 years of age and older with suspected infection or sepsis were eligible. The Quality Assessment of Diagnostic Accuracy Studies tool was used for risk-of-bias assessment. PRISMA guidelines were followed (PROSPERO registration: CRD42020153906). The bivariate random-effects regression model was used to pool the individual sensitivities, specificities and areas-under-the-curve (AUC). Findings Twenty-four articles (of 5669 identified) with 27,237 patients were eligible for inclusion. qSOFA pooled sensitivity was 0·70 (95% confidence interval [CI] 0·60–0·78), specificity 0·73 (95% CI 0·67–0·79), and AUC 0·77 (95% CI 0·72–0·82). SIRS pooled sensitivity, specificity and AUC were 0·88 (95% CI 0·79 -0·93), 0·34 (95% CI 0·25–0·44), and 0·69 (95% CI 0·50–0·83), respectively. MEWS pooled sensitivity, specificity and AUC were 0·70 (95% CI 0·57 -0·81), 0·61 (95% CI 0·42–0·77), and 0·72 (95% CI 0·64–0·77), respectively. UVA pooled sensitivity, specificity and AUC were 0·49 (95% CI 0·33 -0·65), 0·91(95% CI 0·84–0·96), and 0·76 (95% CI 0·44–0·93), respectively. Significant heterogeneity was observed in the pooled analysis. Interpretation Individual score performances ranged from poor to acceptable. Future studies should combine selected or modified elements of different scores. Funding Partially funded by the UK National Institute for Health Research (NIHR) (17/63/42)
    corecore